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CHAPTERI1]

INTRODUCTION

Introduction

Composite materials have become widely used in engincering applications in
the past couple of decades. This class of materials holds many benefits when used
appropriately in engineering applications. Because of analysis uncertainties many
composite components are "over-engineered” and the design is often governed by
reiterative component testing. In these cases, the full benefit of composite materials is
not realized. Tﬁs has led to the development of analysis aids for several different
structural member types.

One of the major composite structural members is the composite plate. A
plate is a load carrying member which is bounded by two parallel planes called faces.
Each face has the same characteristic length and width dimensions and are bounded
by the plate edges. The distance between these faces is the plate thickness and this
thickness is considered tc ¢ small compared to the dimensions of the faces. The
plate faces can take on many different types of shapes (rectangular, circular, elliptical
and others). Composite plates have been used in aeronautical structures for years.
Composite plates are currently being used in land-based construction because of their
exceptional environmental properties.
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There are currently analysis programs which include composite materials. In
addition to specific composite programs, several general finite-element programs
available on large systems incorporate the analysis of composite materials. Analysis
techniques for composites have been changing rapidly. Since these larger programs
have included composites as an auxiliary component, they do not always keep up with
current research in this area. Also, the size of these programs prohibit their use on
microcomputers. Some authors have published computer programs for specific
composite structures or limited composite material lay-ups. No author, however, has
published a computer program for the analysis of general composite plates.

Objectives

The main objective of this research is to produce a working computer program
for the analysis of general composite plates to be used on microcomputers. The
program presented in this paper is limited to the analysis of laminated composite
plates with elastic behavior and small deflections. Shear deformation is included in
the analysis because of the material behavior response specific to composites. This
program is an revision of an existing program published by J. N. Reddy [25]. Reddy's
program was developed to analyze orthotropic materials with elastic behavior and
small deflections. Although single-layered composites exhibit this behavior, most of
the composite plates used in applications have more than one layer and require a more
complex program for analysis.

To validate the computer code, results from the program are compared against
results from other analytical methods and results from other authors in the literature.
This test is used to insure that the program properly employs first-order shear
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deformation theory (FSDT) of composite plates. Additionally, the effect of shear
deformation in composite plates is observed by comparing the program results against
results from a plate theory that does not include shear deformation. Because
comprehensive instructions and documented source code are included, the program
should prove to be a valuable educational aid for teaching the application of the finite

element method to composite structures in advanced composite classes.

Overview

Chapter II begins with an introduction to composite materials with a
background on their mechanics. An introduction to current composite plate theories
ends the chapter. Definitions of variables and sign conventions used in the program
and the rest of the paper are presented to aid in the reader's comprehension. Chapter
HI provides an introduction and derivation of first-order shear deformation theory of
composite plates using variational energy formulation. Chapter IV shows how this
theory is transformed into a finite element model for use in the computer program.
Numerical results from the computer program are compared against other analytical
method solutions to validate the program code in Chapter V. Finally, conclusions
derived from the results and recommendations for future work are presented in
Chapter VL

It is assumed that the reader has a general knowledge of composite materials,
plate theory, and the finite element and variational methods. Some background is
presented in these areas to define terms and conventions used in the plate theory. For
further information in these areas, see the following references: composite materials

[1,30], plate theory [27,29,33], finite element and variational methods [8,10,21,24,25].




CHAPTERII

MECHANICS OF COMPOSITE MATERIALS AND PLATE THEORIES

Composite Materials

There are many types of composite materials used in the fabrication of
structural components. The term "composite” refers simply to a material made of
more than one distinct constituent. Composites have become known as materials
which have clear boundaries between its constituents, and whose constituents have
markedly different material properties. The constituents combine to form a composite
material with material properties considerably different from any of its constituents.
Most of the moderm composites contain either particulates or fibers as main
constituents. Particle-reinforced composites are formed by suspending either random
or preferred orientation particles in a surrounding material. The material properties of
these types of composites are obtained from load tests and are similar to isotropic (for
random-oriented particulates) or orthotropic (for preferred orientation particulates)
materials. Fiber-reinforced composites are made of fibers suspended in a surrounding
material. The fibers may be either continuous or discontinuous (short-fiber). Fiber-
reinforced composites may '~ either single-layered (including multiple plies of the
same fiber orientation) or multi-layered. See Figure 1 for an outline of composite
classifications. The program presented in this paper, COMPLATE, is useful for
analyzing all of the above composite types. The most general case of composites are

multi-layered continuous-fiber-reinforced hybrid composites. The mechanical
4
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response of the other composite types can be modeled with simplifications to this
general case. Also, continuous-fiber-reinforced composites are the most commonly
used composites for structural components where high strength is required. For these
reasons, the mechanics of continuous-fiber-reinforced composites are defined further
and are utilized in the development of the computer program.

Composite materials
1
| 1
Fiber-reinforced composites  Particle-reinforced composites
(fibrous composites) (particulate composites)

Random Preferred
orientation  orientation

| = E

I 1
Single-layer composites Multilayered composites
(laminae) (laminates)
l  Laminates  Hybrids
r 1
Continuous-fiber-reinforced  Discontinuous-fiber-reinforced
composites composites
Unidirectional Bidirectional Random Preferred
reinforcement reinforcement  orientation  orientation
(woven)

Figure 1: Types of Composite Materials [1].

Continuous-fiber-reinforced composites (hereafter, simply composites) differ
in many ways from isotropic materials. Composites are generally composed of two
distinct materials:  reinforcements (fibers) and matrix (bonding material).
Reinforcements made of fibers form the strength of a composite because they carry a
majority of the load. Matrix is the material in between these fibers that binds the
fibers and provides for load transfer between fibers in case of fiber breakage. The
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matrix also protects the fibers from environmental degradation and damage due to
handling. The matrix material generally has strength and stiffness properties much
less than the reinforcement or fiber.

Composites often achieve strength-to-weight ratios significantly higher than
metals. Atomic theory predicts strengths much higher than those actually found in
practice for all materials. The reason for this shortfall in strength arises from inherent
defects at both the microscopic (atomic) and macroscopic (visible) levels created
during material processing. The largest allowable defect size at the macroscopic level
depends on the cross-sectional area of the material. For bulk materials, relatively
large defects can occur during material processing. For the manufacture of composite
fibers, the size of defects is reduced because the cross-sectionai area of the fiber is
relatively small. If a visible defect is present in the fiber material, it breaks as it is
stretched during manufacture. The unbroken portion of fibers have defect sizes
limited to the microscopic level. By themselves, fibers are not useful for structural
applications because of their small size and strength. A large number of fibers are
bonded together by use of a matrix to form a high-strength material. There are many
methods for manufacturing composite materials. The main concem of this paper is
composite plate applications, so the following discussion refers to the structure of
composite plates. However, for more information pertaining to the manufacturing of
composites see references by Agarwal and Broutman [1], and Vinson and Sierakowski
[30].




Lamina and Laminates

The ply is the basic building block of composite plates. A ply is the thin sheet
of unidirectional fibers bonded by matrix material developed during manufacture.
The ply is often many fiber diameters thick. A lamina or layer is formed when a
unidirectional ply or combination of unidirectional plies of the same material with the
same global fiber orientation is suspended in a matrix. Although it may consist of
several plies, the important aspect of the lamina is that it is defined as a layer of
material with common directional material properties. A multi-plied lamina contains
a fiberless interface between plies which is relatively thin and is often ignored for
analysis purposes. In practice, fibers are not equally spaced, but for schematic
purposes, the lamina is often depicted having a single layer of fibers with universal
fiber spacing as in Figure 2.

The material properties of composites differ from isotropic materials in the
following way. [Each lamina exhibits a generalized orthotropic behavior whose
pruperties are different on three mutually perpendicular planes aligned with the fiber
direction shown as 1, 2, 3 in Figure 2. Material properties are defined in the three
directions corresponding to these planes.

3
A 2
matrix
, /1 ] /_
O ————————==== =
S 2/
S 2/
CZ WA 1
(4 7
/L A
= 170/ fiber
L7 74

Figure 2: Schematic view of a lamina
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These lamina are then stacked with the fibers aligned at different angles to
form what is called a laminate as shown in Figure 3. The lamina are labeled
according to their fiber angle relative to a global direction (x-axis). A code has been
developed to label laminate stacking sequences. For example, [0/45/90] is a laminate
composed of three equally thick lamina whose fibers are oriented 0°, 45°, and 90°
respectively to the principle reference direction starting with the bottom layer (as
shown in Figure 3). A subscript s, [90/45/0]5, denotes a symmetric lay-up where the
top layers are stacked in reverse order or [90/45/0/0/45/90] and a numerical subscript
denotes the number of repeated plies, [90,/45,/0,] = [90/90/45/45/45/45/0/0] for
example.

As the lamina are stacked to form a laminate, effective macroscopic properties
are developed to characterize the laminate. These properties are assumed to be
homogeneous although direction dependent (anisotropic) and are a weighted average
of the properties of the composite constituents. Therefore, two laminates made of the
same fiber and matrix n.aterial may have very different macroscopic material

properties because of a difference in their stacking sequence.

/
N W4
C W4l
? W4
( l/D
C /90
90 o [\ ;d) z
= y
45°
0° x

Figure 3: Schematic of a three-layered laminate [0/45/90].




General strengths and properties are experimentally determined for
unidirectional lamina of composite materials. These lamina strengths are
incorporated through the use of equations to predict effective macroscopic properties.
Strengths of laminate stacking sequences are determined by one of several failure
theories [1]. Test specimen are used to experimentally measure material properties
and consist of small strips of composite. These specimen are checked for apparent
flaws or defects and their edges are smoothed. The test specimen, therefore, form an
ideal base-line on the strength of the composite.

Lamina Constitutive Relations

For a given lamina, the stiffness properties are generally given with respect to
principal fiber directions. Direction-1 is aligned with the longitudinal direction of the
fibers. Direction-2 is aligned with the direction transverse to the fibers in the lamina
plane. Direction-3 is normal to both the 1 and 2 directions. Figure 4 shows these
directions with respect to fiber alignment.
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3
/N
2
y e P 4
/ - 7
/- ; .{_/ ______ 4 7/
/o - 1

"""""""""" denotes lamina fiber direction

Figure 4: Principal fiber directions (1,2,3).

The material properties are determined through experimentation. Most lamina
are characterized by the following independent material properties: E,, E,, v,,, G,,,
G,,. G,;. These properties are used to develop the stiffness matrix.

A general 6 x 6 orthotropic stiffness matrix relates the 6 principal normal and
shear strains to the corresponding principal stresses [1]. For the laminate plate theory
presented in this paper, the out-of-plane normal strain, €, , is assumed to be zero. This
strain is uncoupled from the other strains and it allows the stiffness matrix to be
reduced to 5 x 5. For each lamina, the orthotropic stiffness matrix aligned with
principal fiber directions is defined by the following stress-strain relationship given in
equations 2-1 and 2-2.

o, -Qu Q, 0 0 0

o, Q12 Qn 0 0 0 €,
1%2¢=1 0 0 Q5 0 0 ivpg 2-1)
Ty 0 0 0 Q. O }|lyys
T13 ) 0 0 0 0 QY]
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where the matrix terms are defined as:

___E, _ vi.E, E,
Q= 1-v,,vy Q= 1-v,vy Q= 1-vp,v,,
Qi =G, Qu= st Qss =Gy, (2-2)
and v,, = VisE,
E,

The stiffness matrix given above is most useful for characterizing lamina
properties. Laminates are formed by stacking layers of lamina with varying fiber
oricitations, thicknesses, and materials. To accommodate the variance in fiber
orientation, the lamina stiffness matrices must be transformed to a common global
orientation. For each lamina the fiber orientation is defined by the angle, 6, , that the
fiber direction makes with the x-axis. The angle 6, is defined as positive in the
counterclockwise direction and negative in clockwise direction as shown in Figure 5.
The angle 6, can have a value between 90° and -90°.

Figure 5. Global fiber orientation, 6.
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The following relationships are based on a laminate of N layers. For each
lamina (k = 1,2,3,...,N), the transformed stiffness matrix, [Q], is defined by the stress-

strain relationship aligned with the global axes (x,y,z) as follows:

(o, ] » 72-" Q. Q O o[ €, | ®
c, Q, Q. G, 0 0 g,
'y = Qs Q3 Q, 0 0 Yy {
Ty 0o 0 Qu Qs Ty
) L0 0 0 Qs Qu] (Y
where for each lamina, k:

Q= Qum* +2(Q; +2Qy)m’n’ +Q 0"

Q. =(Qy +Qx -4Qy ym’n’ +Q,,(m* +n*)

Q; =Q,,m’n- Q,,mn’ -(Q,, +2Q,;)mn(m’ - n?)
Qx =Q,n* +2(Q,; +2Q;;)m’n? +Q,,m*

Qs =Q,mn’ -Q,m’n+(Q,; +2Q;,)mn(m’ - n*)
Qs =(Q;; +Qx - 2Q,)m’n? +Q,,(m? — n®)?

Qu = Qum’* +Qyn’

Qs = (Qss —Q, )mn

Qs = Qun® +Qm’

and m=cosO,, n=sin0,.

(2-3)

(24)
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Laminate Constitutive Relations

In order to develop constitutive relationships that are independent of z, it is
useful to define load and moment resultants. These resuitants are the loads and
moments per unit length along the lamina x and y cross-sections and acting through
the laminate mid-plane. The orientation and positive direction are depicted in Figure
6.

Moments defined by
right-hand rule as shown

Figure 6: Orientation and positive direction of load and moment resultants.
The in-plane load resultants (N, , N, , N, ) are defined as the integrals of the in-

plane stresses through the thickness in the respective directions shown above in Figure
6.
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€ dz (2-5)

Z

[}
Ny

_Q

R

Z

[}
o

gq

g

z

}
e

The moment resultants (M, , M, , M,)) are defined as the integrals of the
moments created about the laminate mid-plane by the in-plane stresses through the
thickness in the respective directions shown above in Figure 6.

y y Iy

L] h
M, =[ioziz M,=[ic2dz M,=[ir,2dz (2-6)
2 2

w|Lele

The shear load resultants (Q, and Q)) are defined as the integrals of the
transverse shear stresses through the laminate thickness.

t,,dz 2-7

n

b
Q= [Atatz Q=
2

w|leie

Figure 7 shows the laminate coordinate system through the laminate thickness
with terms used in the following sets of equations.




15

A
Zy
Layer-N
f
h/2
Layer-k T } t
’ T 3 Zy
o
— -}- —————————— '— —t— -t Laminate Midplane
h/2 z,
Layer-2 2
1
N Layer-1 2,

Figure 7: Laminate coordinates and terms.

The load resultant equations 2-5 to 2-7 along with the stress-strain relations 2-
3 and 24 are used to develop the laminate stiffness matrices. The extensional
stiffness, coupling stiffness, and bending stiffness matrices, A, B;, D,, respectively,
are defined by the following matrix equations:

N, ] (A, A, A, s B, B, B,] '3: ‘
N, A, Ay, Ay i B, By, Byl
<E__>___ Ay Apy A, E_?u By B, 4:{_;_’ (2-8)
M, B, B, B,!D, D, Djilx,
M, B, B, By EDu D, Dyllx,
My |Bs By By 1Dy Dy Dy J|Xy |

L
Q. As Agsjlre




16

where €, € are the in-plane strains at the laminate mid-plane, x, ,x,,x_ are the

y’ny

laminate curvatures, and y}*,y_* are the average transverse shear strains as defined

in the next chapter by first-order shear deformation theory.
The definitions of A, B, D plate stiffness matrix terms (i, j = 1,2,3) are given
followed by simplifications for laminated plates.

A J’ Q(t)dz ZQ(”(Z&‘ZM) ZQ“)I&

k=1 k=1
y N
1
B; = B@%”zdz = 'z'kz m(zk - zk-l) ;Q(ntklk (2-10)
2 -

D, I—G“"z’dz ZQ(”(Z,‘ z,) ZQ""(t, k+t3)

k-l k=i 12

The definitions of the terms z,z, ,z, ,,t, and Z, are given in Figure 7. The transverse

shear matrix terms A;(i, j = 4, 5) are given by the following equations.

N N
Q )dz=kncZQi?)[zk—zk—l]=anQi§k)tk 2-11)

k=1 k=l

>
Il

~|

where kg is the shear correction factor. Methods for determining the value of the
shear correction factor are presented in [5,31,33,34]

Inertial properties of the composite plate are required for dynamic analysis.
The density of each lamina is given by p® where k is the layer number. The following
terms represent transverse, transverse-rotation coupling, and rotational inertial

properties respectively.
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b N N
P = Bp(”dz = me (24 = 24,) = metk
2

k=l k=l

L N N
1 -
P = B pMzdz = EZ p® (2} -21,) = metkzk (2-12)
2

k=l k=1

h N N 3

b 1 \ Lt
p, = [1pW27dz = 3 > p® (23 -2;,) =2 :p""(tkd +;§}

2

k=l k=l

The relationships for general orthotropic-layered laminated plates given above
can be applied to many other types of composite plates. Single-layered laminates can
be accommodated by using a single layer (N=1) in the above equations. For preferred
orientation (both fibrous and particulate) and bi-directional lamina, the orthotropic
relationships along with the preferred orientation (6) can be applied to a single layer.
For random orientation lamina (discontinuous-fiber and particulate), isotropic
relationships are obtained by using a single modulus of elasticity (E, = E, = E) a single
shear modulus (G, = G,; = G,; = G), and Poisson's ratio (v,, = v) in the above

relationships.
Plate Theories

Plate theories are simplifications to general three-dimensional elasticity theory
and were developed to analyze one of the basic structural member types, the plate.
Three-dimensional elasticity theory may theoretically be used to analyze any solid
object. Elasticity theory is often prohibitive in practical use because of the complexity
of the solid object and the cost of applying the general theory to each analysis case.
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Because of the general shape and load conditions common to plates, certain
assumptions are made which reduce the equations of elasticity theory to several less-
complex governing equations. There are two important points to remember when
applying plate theories. First, the assumptions made in simplifying the governing
equations limit the types of cases where a particular plate theory can be effectively
applied. Second, the assumptions create an «pproximate solution for the plate
problem. Other methods including testing should be used to determine the accuracy
of the plate theory solution. Many of the plate theories were first developed for
isotropic materials and were later adapted to composite materials.

Two-dimensional plate theories are developed by assuming displacement
functions. These functions are characterized by equation 2-13. The displacement of
any point in the plate (u,,u,,u,) is defined by its mid-plane displacement (u,v,w), a
function of the mid-plane coordinate (x,y), and an assumed form of the displacement
through the plate thickness (U,V,W), dependent on the laminate mid-plane coordinate
(x,y) and distance from the mid-plane (z). These functions are also dependent on time
(t) for the case of dynamic problems. By separating the displacement functions into
these two parts, the analysis can be reduced from three dimensions (x,y,z) to two
dimensions (x,y).

u,(x,y,z,t) = u(x,y,t) + U(x,y,z,t)
u,(x,y,2,t) = v(x,y,t) + V(x,y,z,t) (2-13)
u;(x,y,2z,t) = w(x,y,t) + W(x,y,z,t)

Classical plate theory (CPT) was the first form of the plate theories and is
attributed to Kirkhhoff [20]. This theory was the first attempt to characterize thin
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isotropic plates and is limited in its scope of applications due to many assumptions.
The adaptation of this theory to laminated composite materials is generally attributed
to Yang, Nomis and Stavsky with additions by Whitney and Pagano [33]. The
following assumptions provide the basis for CPT [35].

1. Plane sections of the plate cross section remain plane and normal to the
mid-surface.

2. The deflections are small compared to the plate thickness.
3. Transverse normal strain is zero and transverse shear strains are negligible.
4. Transverse normal stress is negligible.

These assumptions result in the simplified displacement functions given in
equation 2-14. These functions have three degrees of freedom (w,v,w) which are
dependent on x, y, t only. |

u, (x,y,z,t) = u(x:Y:t)— z—aé’:_(xay’t)
u,(x,y,z,t)= v(x,y,t)—z%(x,y,t) (2-14)

u,(x,y,z,t) = w(x,y,t)

This theory is adequate for a large class of isotropic plates and very thin
composite plates. For thicker plates, with length and width to thickness ratios of less
than 10, CPT tends to under predict the deflections in plate. This is caused from the
transverse shear strains being larger than the assumption requires. This problem is
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also encountered in moderately thin composite plates because of the directional
material properties unique to composites.

One theory that addresses this inadequacy is the first-order shear deformation
theory (FSDT). This theory was developed by Reissner for static analysis and refined
by Mindlin for dynamic analysis of isotropic plates [18]. Yang et al. modified this
theory for composite plates with further refinements by Whitney and Pagano [33].
This theory includes transverse shear strain in the analysis and gives better results for
deflections and stresses in composite plates. Equation 2-15 shows the assumed
displacement functions for this theory. Note that this theory allows five degrees of
freedom (u,v,w,y,,y ). This theory is known as first-order because the total
displacements are assumed to be linear functions of z through the plate thickness.
FSDT is presented in greater detail in the next chapter.

u,(x,y,z,t) = u(x,y,t)+ zy, (x,y,t)
u,(X,Y.2,t) = v(x,y,t) + zw (X,y,t) (2-15)
u3(xay’z:t) = w(xs)'at)

FSDT does not adequately address boundary conditions on the plate faces or
predict the interlaminar shear stresses through the plate thickness. In response,
several higher-order shear deformation theories (HSDT's) have been presented based
on work by Reissner and Schmidt for isotropic plates [18]. HSDT has been extended
to laminated plates by Nelson and Lorch, Librescu, Lo et al. and Reddy [20]). These
higher-order theories retain higher-order terms of z in the displacement function (see
equation 3-1) than in CPT or FSDT. Several HSDT's have been presented by a
number of authors. A sample of these theories can be found the following references
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[3.6,12,13,14,18,19,22,26,28 35]. Equation 2-16 shows the general form of HSDT'.
The number of degrees of freedom depends on the order of the displacement functions
in terms of z and the assumptions of the particular higher-order theory.

u, (x:y’z=t) = u(x,y,t)+ vy, (x’Y:t)+ zzgx(x,y,t)+ 23¢x (X’Yst)“'"'
U, (x’y’z:t) = V(X,y,t) + Z\I’y (X,y,t) + zzc)y (X,y,t) + 23¢y (X:Yst)+" * (2'16)
u,(x,y,z,t) = W(X,y,t)'i- Z\I'z(x,y,t)*' zzgl(x,y,t)+---

HSDT's produce more accurate transverse shear stress results than the two
previous theories, however the resulting deflection and normal stresses show little
improvement over FSDT [22]. They also requirc large mathematical and
programming costs. Developing a program for one of these theories for a
microcomputer is prohibited by the current computing capacity of existing
microcomputers. FSDT is chosen for use in the computer program for its relatively
small computing requirements balanced with its improved analysis results.




CHAPTER III

FIRST-ORDER SHEAR DEFORMATION
THEORY OF COMPOSITE PLATES

General theory

The first-order shear deformation theory (FSDT) presented in this chapter is
used for the revision of the computer program (COMPLATE) from the previously
written program PLATE by J. N. Reddy [25]. This theory models general laminated
composite plates and includes dynamic considerations. The main purpose of utilizing
this theory is to transform a three-dimensional elasticity problem into a two-
dimensional problem. The energy formulation is used to generate mass and stiffness
matrices for application in the finite element method presented in the next chapter.

The need for this theory arises from the invalidity of neglecting transverse
shear deformation in CPT. Transverse shear is no longer negligible in thick plates of
length to thickness ratios less than 10 for isotropic plates. Also, shear deformation is
significant in composites with length to thickness ratios much larger than 10. This is
due to the effective elastic modulus along the fiber direction (E,) being much larger
than the transverse shear moduli (G,, , G,), sometimes by the order of 25 to 40
compared to 2.6 for a representative isotropic material [22].

The assumptions listed in the next section describe the restrictions to this
model and should be considered when using this program for engineering
applications. The global axes described in the next section are shown in Figure 8 with

2
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an example rectangular plate. Note that the xy-plane corresponds to the laminate
midplane and the z-coordinate describes the distance and direction (upward or
downward) of a point with respect to this plane.

Figure 8: Schematic of a rectangular plate.

Assumptions

The basic assumptions for this first-order shear deformation theory (FSDT) are
given as follows. The terms used in the assumptions are described on the following
pages [33].

1. The plate is constructed of an arbitrary number of orthotropic layers
(laminae) which are perfectly boned together. The directions of principle
orthotropic material symmetry, the thickness, and the material of each layer
may vary.

2. The plate is considered to be relatively thin compared to face dimensions.

3. Plate displacements (u, v, w) are small compared to the plate thickness (h).

4. In-plane strains (g,, €, ¥,,) are small.
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5. To include in-plane force effects, non-linear terms in the equations of

motion involving products of stresses and plate slopes are retained and all
other non-linear terms are neglected.

6. Transverse shear strain (y,,, ,,) are included in the analysis in case they are
not negligible.

7. The total in-plane displacements (u,, u,) are linear functions of the z-
coordinate through the plate thickness.

8. Transverse normal strain (g, ) is negligible compared to other strains.

9. Each lamina behaves in an elastic manner and is governed by Hooke's law.
10. The total plate thickness is uniform throughout the plate.

11. Body forces are negligible compared to other plate forces.

12. All linear incrtial terms are retained for dynamic analysis.

Variational Energy Formulation

For FSDT, a first-order (linear) displacement field in terms of z is assumed.
The general displacement of any point in the plate is described by the following first-
order displacement functions.

u, (x,y,2,t) = u(x,y,t) + zy_(x,y,t)
U, (x,¥,2,t) = v(X,y,t) + zy, (X,Y,t) @3-1)
u,;(x,y,z,t) = w(x,y,t)

where u, , u,, and u, are the displacements in the x, y, and z directions respectively, u,
v, and w are the displacements of the laminate mid-plane in the same directions, and
V: and ¥y are the rotations in the xz and yz planes respectively caused by plate
bending and transverse shear deformation. By adhering to the assumption of small
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displacements the strains are derived from the displacement functions in equation 3-1

as follows:
s,=@’—=2u-+zaw‘=t::+zxll
ox Ox ox
u, ov v,
g, =—==—+2 =€, +2K,
oy oy oy
ou, Ou, Ou_ ov oy W,
=ttt =t —tz| —=+ =y + 3-2
Y’Vayaxayaxz(ayaxy"“" (3-2)
du, Ou ow
sz=€2-+—5;2—=\yy+3y—=y;;'
o, Ou, ow -~
= ——— = + —
e,:%:O

The definitions of the mid-plane strains (€;,€;,7;,) and the curvatures
(x,.X,,X,, ) can casily be derived from the last two equalities in each equation.
Note that the transverse shear strains (y,,,v.) are constant through the plate
thickness (independent of z). Since actual transverse shear strains are not constant
through the plate thickness, the ones predicted by this theory represent average shear
strains.

This FSDT is based on a displacement derivation. For each point in the
laminate mid-plane, five degrees of freedom are defined. This allows for enough
degrees of freedom to provide adequate results for a majority of composite plate
applications. These degrees of freedom are also referred to as generalized
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displacements and consist of the following displacements and rotations: u, v, w, y,
and y,. Each generalized displacement is a function only of mid-plane position (x, y)
and time (t) for dynamic cases. These generalized displacements allow for the
reduction of three-dimensional model (x,y,z) to a two-dimensional model (x,y) of the
laminate mid-plane for analysis purposes.
For the general dynamic case, the energy formulation is based on Hamilton's
Principle:

8L dt=0 (3-3)

The Lagrangian (L) may be defined as components of energy in the following

manner.

L=U+V-T (34)

where U is the total strain energy, V is the potential energy due to the uniformly
distributed transverse load, and T is the total kinetic energy of the plate.
The first variation of the Lagrangian can be written as the variation of its

components:

5L = 8U +8V - 8T (3-5)

In order to find the first variation of the Lagrangian, the first variation of each
of the components are derived in terms of displacements. The total strain energy of
the plate (U) is defined by the integration of the strain energy in terms of stresses and
strains of each point in the plate.
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U= {-Hj(c,e, +0,8, +0,€, + 1,7, +1,7,, +tuyu)dV (3-6)
v

Using the definitions of stress from equation 2-3 in the previous chapter, the

strain energy can be recast as:

= %J‘IJ‘[—Q-IIS: + 6218: +633Y :y +26]28xey + 2613817 xy + 26\291'5,
v 3-7)
+2Q,Y 4y + Qu¥ % + Qusv2, +2Qus7 .1, JAV

Substituting the definitions of strain from equation 3-2, the following equation
is obtained:

Lerflm (20, 00, Y .= (v, Y = (6u ov, (0w, v,
U=§J.‘.[I[Q"(?&+ZK) +Qn(§+2jay—) +Q33[5;+-5x—+1( ay + 2 ))

n oy v, N o5 (0 v (v %N,

+2Q"(ax x )[5” Y +2Q"(ax+z & )(ay+ax+z( y o D
o, v You v, (ow, W)\ = w)

+2Q23(ay ay )(§+—+Z(—-a-y—+——ax ))+Q“(\|Iy+ ay)

— owY .~ ow ow

+Q55(Wx +-a;) +2Q4s(\l’x+'5x—)(\|’y +E) ]dV (3-8)

Expanding the equation and factoring terms of z (1, z, 22) yields the following:
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2 2
U=—;—Iﬂ|:6“[ixu +2za;;‘ +7z? a;;‘ )+6u(%yv-2+226;;’ +z’-a—w—’- )+633
(@+Q+z(aw‘ +a\u, )]+26,2[22V—+ z(@a‘v’ +& 6‘"') 2 ¥y e“—”—)
dy ox o ox Oxdy ox 9y oy ox ox oy
A AL )
oxody Oxodx ox\ oy ox ox \dy Ox

20y, [dy, Ov, = [Qudv vov ov(dy, v,
+z F™ ( e + v ))+2Q”(ayay+axay+zay( e Fw )

oy, ). .ow, (oy, v, < ow) < owY
+z > (§+a)+z > ( % + Fo ))+Q“(‘"’+Ta'y_) +Q”(w’+3x_)
+2Q,(\p,+%)(\py +%) ]dV (3-9)

Since u, v, w, y, and y, are independent of z, the triple integral may be
integrated with respect to z, and the relations for A;, B;, and D;; from equations 2-10
and 2-11 may be applied to yield:

1 o’ u oy, .
U=EIAJ{A,,a +2B, === +D,,%Vx— +A,,




The first variation of the strain energy is:

weg{

+B,,

(3-10)

Qlo
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ow, )| d . A
+D,3(aq"+ ’)]—(8w,)+|:813&+B23—a?+B33Ga-y—+&)+D,3a;"‘

v, (0w, ow,\|( o d ) ow
+Dy 3y +D33\ dy + o )}(5(5\1’;)+5(5W,)J'*’[Ass(\l’x +a)

)
oo, + 2|2 0w+ v+ 2 a0, + 20 |2 o

(3-11)

Using the expression for the derivative of a product, the following relation is
derived:

d 0 of, of 0 d
J;I(f, B;(su) +f, B—y—(&u))dA = —-[;[(_a—xl_ + E’)SudA + ‘U(a (f,5u) + -é;(f28u))dA
(3-12)

Green's Theorem is used to evaluate the last integral above:

i D ou)+2(5,5u) |da= [ (£,5udy - £,5udx) (3-13)
N aX 1 ay 2 4 1 2

This leads to the following equation used to evaluate 3U:

) of, of
'U (f, Sax-(s“) +f, b—y—(Bu))dA =- ‘U [Bﬁ -éyl)SudA + _! (f,5udy - f,5udx) (3-14)
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SU may be divided into terms with common factors of variational
displacement, 3U,, to 8U,, , and a boundary term, 3Uj .

8U = 8U,, +8U,, +8U,, +8U,, +8U,, +8U; (3-15)

’u a*v ( Ju a’) o*v

8U, =-{[|A, —=+A,—+A +A, —

e I}[ "okt Paxdy  “\Taxay ax* ) 2oyt
2

2 & o
+A,, 4 LA P +B,, "; +B,- Yy B, A ";’ (3-16)
3y’ oxdy o 2 axdy My | ox

62 2 62
A0 A PN | PR
oy dy’ axay

o*u ov ou _ dv o*u
8U,, =-[f| Ap -+ Ay +An(55-+26xay)+A,, =
2

( A2 2 2 K]
AL V)+ AT A A (3-17)
v

13 axz ayz




8U,,, =~-[[| By, == *Bu oyt

( A2 2 2 a2 2
+B,, -a—-‘zl+ﬂ)+Du 4 “;‘ +D,, Yy +D,, 2‘3 Ve y
\Oy" @&xdy ox oxdy Oxdy
2 2
\ oy, Oy
D, —22 D,,[ a:: +a§’)] Sy, dA
and
2 2 2 2
- j[B,, Y B, oY B,,(a 222 )+B,,a—‘:
A oxady oxdy oy Oxdy ox
z 2 32
+B33(aaxay gxz )‘Q-D12 aax“a’; +D,, aa;l‘zx +D,, a;vzy

Py, oy d*y, 0,
+D,_,[ o +2axa;]+D”(axay T pe Sy, dA
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(3-18)
62
-EXYQL) (3-19)
(3-20)

By utilizing Green's Theorem and applying the laminate load resultant
relations from equations 2-8 and 2-9, the boundary condition component becomes:
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8Us = [(N,8u+ N, 8v + Q8w +M,y, +M, v, )dy

(3-21)
~ [(N,,80+ N v +Q,5w + M, y, +M by, )dx
Sy

For the computer program, the loading on the plate is assumed to be a uniform
pressure, thus the potential energy in the plate due to applied transverse pressure (V)

IS

V=[[qwdaA (3-22)
A
and the first variation of V is
8V =[[qéwda (3-23)
A

The total kinetic energy of the plate (T) is the final component of the
Lagrangian. It consists of the following integral of the energy of each point in the
plate.

1 fffo] 2, 20 3“32]4 3.24
sz!jp[at+at+at v (20

The time derivatives of the displacements are found by taking the first time
derivative of equation 3-1 and result as follows:




ﬂ:@.{.za‘"‘

a ot ot

du, v oy,

— R e -
e z o (3-25)
a o

Substitution of these time derivatives into equation 3-24 yields:

2 2 2 2
T=‘%IHP[QH— +& +?!-z+2z(auw‘+avaw’)+z2[aw‘ L ]Jdv

a a o aa a a at at
(3-26)

Since the time derivatives of u, v, w, ¥z and ¥y are independent of z, the
equation may be integrated with respect to z and the inertial terms from equation 2-12
(P1, p,, and p;) may be applied:

T - H[(p, X, 2 )-a-(Su)+(P| 2 10,2212 gy 40, 22 o)

] a Ja a a a ot
o (3-28)
ou oy, P
HP g +Ps )5(5%)**(925{*‘93—&’-)5(5%)]“
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and using the same relation as the one derived for strain energy (equation 3-12), 8T
becomes:

Pu vy, Pv Dy ’w
8T=—{I[(pl Py +p, a:'; )6u+(p, e +p, atz’ dv +p, ?Bw

u Dy, Pv vy
“{Pz o +P, a:'; )5“’;*'(92 Py +pP; atzy Sy, |dA

a[( au . v ov ow
+'[;[5t_[(p' E+ P, %)Su +(pl Y +p, at’ )8v +p, -E-SW

ou ov oy
+(Pz E*’ Ps a‘al’t; )8"’1 + (Pz —at_+ Ps T’)&V, ]dA

(3-29)

The above variational components of virtual energy (8U, 8V, §T) may be
combined to form the Lagrangian and collected on terms with common variational
displacement factors.

t \
L SLdt +35L,|! =0 (3-30)

where 8L = 8Ly, +8Ls, +8Ls,, +8L4y, +8L4y, +5L, and 8L, is defined at the time
limits t, and t, .

Therefore,
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du_ &8 ?
An( + Y A A :
dy* axay)+Bll 7 +B,—+B 26 ¥ :
: ox axdy | oxdy o @31
v y, O
+By—7 +B33[a “;‘ + oV, - o*u o'y
ay axay pl a —pz azl sudA
5Ly, = - [ A 22 o 8,22 =7
'g o Azzaxay"'A” 6121+26v o
L ay* “oxay) “ox?
on & ?
+A33 ‘——+—v)+B v i :
x + Wl a ‘V ?
 axdy x> 12 %3y B, P +B, 6y2’ +B,, 4 \I’zx +262\|1,
- 2 oy oxdy
+B,, ox =+ Yy - oy azw’
(oxdy &’ 1% Py Svaa

A o oy
p
+A N, Ny +2 w Gl
FY~ o0y 15 q|dwdA

(3-33)
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[ 2 2 2 2 2
Ly, =-[f|B 23+Blza_v+gn(zﬂ_+a_v)%zx

8L~,=—j;j B

+B,;

+D,,

The boundary term of the Lagrangian can be recast in the following general
form along the boundary.

8Lg = [ (N, Bu, +N_3u, + Q5w +M,3y, +M_3y,)dS (3-36)
S
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)

Figure 9: Orientation of n and s axes along the plate boundary.

In order to satisfy Hamilton's principle, one of the products of each term must
be specified along the boundary over the entire time interval. This leads to the
following conditions which must be specified on the plate boundaries. The
orientations of n and s along the boundary are shown in Figure 9.

N,oru,, N, ,oru, Qorw, Mory,, M, ory, (3-37)

The final term of the Lagrangian variation (8L, ) is defined only at the limits of
the time integral. In order for this term to satisfy Hamilton's principle, the generalized
displacements must be specified at the time interval endpoints. This condition is
satisfied in the finite element method by discretizing the time interval and treating
each time step in a semi-static sense as explained in chapter IV. The generalized
displacements are then found through a static analysis at the time limits. This term is

shown below as:
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o oy ov oy ow
8L, = [(p —<+p ‘)8u+(p —<+p ——l)8v+p —dw
IAI 'aa T & 'a T a Pat

du . o . oy
"{Pz 'a—t"' Ps %“)6\": + (pz ;"’ Ps T,JGWy ]dA

(3-38)

The combination of all these variational terms yields the equation form given
in equation 3-39. The first five terms in the area integral (first line below) each
include the integral of a product of a term in parantheses and a generalized variational
displacement. In order to satisfy Hamilton's principle, each of the terms in
parantheses must be equal to zero since the variational displacements are arbitrary.
This process generates five governing equations of motion. The second line in
equation 3-39 defines the boundary and initial conditions.

I\ {H [(Jou+()ov+( Jow+( Jow, +( Jow,JaA
" (3-39)
+I[N_8u. +N,8u, +Q, dw+M by,  + M_S\p']dS} +0L, |:l =0

By applying the definition of strain in equation 3-2 and the load resultant
definitions from equations 2-8 and 2-9, the equations of motion can be displayed, in a
shorter notation, in terms of load resultants. The variational displacement before the
equations below describe the paratheses location of the corresponding equation in
equation 3-39.




Su: a:x, +a;." =p, g::l"'Pz 5
dw: a;i' +a;’ =p, z;:v +q

By, : b;dx +2M5f—=pz ‘Z;’w, a;“;‘
Sy, al;{x".,.a:'v _ng::'_‘_psa;‘:y

(3-40)

These five equations are the governing equations for all plates based on small
deflection theory including shear deformation and rotary inertia. For the finite
clement method presented in the next chapter, a displacement formulation is required.

The equations of motion can be cast in matrix form in terms of displacements for

easier conversion to the finite element method. This leads to an equation of the

following form:

[M{a}+[K}{a}={£}
where:

{a}={uw,v.w,v,.v,}'

{8} ={uwv.w.9,.9,}

{f}={0,0,q,0,0}"

(341)

(3-42)




The mass matrix terms are shown below:

below.

M, =M, =M, =p,

M, =M, =M, =M, =p,
M, =M, =p,

All other M =0

41

(343)

The stiffness matrix terms are written as differential operators on the vector
{A}. Note that this matrix is symmetric and only the upper half terms are indicated

Ky =A“§;+2A,3%+A”§;
Ki =A13$+(Au "’Asa)‘.%"‘Azs%
Kip=0

Ku= Bn%"'ZBu%*’Bn%

Kis =By, %(an "'Bas)%"‘Bn%

K, =A,3§,-+A,3-£';;+An§;

K, =0

Ky =Bn%+(an+Bss)%+BnTz‘:‘

Ky =By Z+2By&5+Br S
Kn=Aum+2Aud5+Aut
Ku=AuZ+Aud

Kiy=A 2+A %

Ku =Dy, Z+2D, &5 +Dy & +A,

K4 =Dy %‘*‘(Dlz +Dy)35+ Dzs}%"‘Aas

Ky =Dy 5+2Dpd5+ Dy L +A,,

(3-44)
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With the FSDT presented in this chapter, the ground work is set to implement

this theory into finite element code. The next chapter shows how the above matrix
equation is discretized into finite elements and applied to the computer program.




CHAPTERIV

FINITE ELEMENT FORMULATION

This chapter describes the finite element method (FEM) formulation used in
the computer program. Most of the FSDT development is presented in the last
chapter. The subsequent FEM formulation follows J. N. Reddy [25]. The details
shown below describe how the previous governing equations are discretized into
elements. It is assumed that the reader has some knowledge of the finite element
method including interpolation functions.

Generalized Displacements and Interpolation Functions

For the finite element model, the domain of the plate mid-plane is denoted as
R and is divided into a finite number of elements whose domains are R, (where ¢ =
1,2,3,.. number of elements). For each element domain, R, , the generalized
displacements are defined by use of an interpolation function ¢, (wherei=1,2,3, ..,
n). The interpolation function is the same for all five generalized displacements
which are described by:

us= i‘%’i V= ivi¢i w= iwi#i

im] . iml ] i=] (4-1)
THED I N T TN Y

i=l iwl
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n is the number of nodes per element and the interpolation finction depends on the
type of element used in the analysis.

Development of Element Mass and Stiffness Matrices

The equations of motion derived for the FSDT can be applied to each element
by substituting the equations 4-1 and into equations 3-41 to 3-44. The simplified form
of the differential equation 4-2 remains the same, but the size and formulation of the
matrices and vectors changes. The mass and stiffness matrices are square symmetric
matrices of the order five times the number of nodes per element. The acceleration,

displacement and force vectors are of the same order.

[me){a}+ [k o }={F} 42)

where the matrices and vectors are defined as:

(pIS] 0 0 pfs] O {u"}]
0 p,[S] 0 0 p,[S] {v*}
[M]=]| o 0 pIS] o 0 {a}={w*}}  @3)
p,[SI" O 0 p,[S] © {vy)
| 0 pfSIT O 0 p,[S] {w}}]




.K"] [an] [Kls] [K"] [Kns]"
[x*] [x=] [k®] [k*] [x*]
[x]=|[x*] [x®] [x*] [&*] [x*]}  {F}
k] [ke] [k°] [k*] [K®]

[x*] [k?] [k?] [k*] [K*]

{F*)

J{F*}}

{F')

The values for the elements of the stiffness matrix are given below:

[K"]=A,[s7]+A,([s7]+[s"]) + An[s”]
[K2]=A,[S7]+AL[s7]+A,[87]+A4[s7]
[x*]=[0]
[K*]=B,[s*]+B,([s7]+[5"])+Ba[s”]

[K"]=By,[$¥]+By[8™]+By[87]+By[s"]

[K*]=[K"] = Ap[s”]+A,[s=]+AL[s7]+A,[s7]

[k=]= Au[s7]+Au([s™]+[57]) + Au[s™]
[K*]=[0]

[K*]=B,[87™]+B,;[$™]+ B, [$7]+B,,[s7]
[K*]=B,[s7]+B,([s]+[s"])+B.[s"]

[x*]=[0]

[k*]=[0]

[K®])= Au[87])+A,([s7]+[s7]) + Ay[s™]

[K*]=Au[s7]+A4[s7]

r{Fl}\ [ ]

{F*} ]
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(44)

(4-5)




[K*]=Au[s*]+Au[s"]

[*]=[K*]" = B,[s=]+By([s7]+[s”])+ Bu[s”]
[K2]=[K*] = B,o[s7]+B,[s%]+By[57]+By[s"]
[k®)=[k*] = Aq[s7]+A4[s"]

[K“]=D,[$=]+ D, ([87]+[57])+ Dy [57 ]+ AsslS]
[K*]=D,,[$7]+Dy[8™ ]+ Dy[87]+Dy[87]+ A [S]
[K*]=[K"]" = B,[$"]+B,[$=]+By[s”]+By[s”]
[k*]=[k*] =Ba[s"]+Ba([s7]+[s7])+ B [s7]
[K=]=[&*] = Au[s”]+A4[s"]

[K*]=[K*]" =D,[$"]+D,[s=]+Dy[s” ]+ Dy[s7]+A[S]

[K*]=D,[s7]+Dy([s7]+[s"])+ D,[s%]+Au[S]

The values of the [S1] sub-matrices are area integrals of interpolation function
values and derivatives. These sub-matrices are of order n x n, and are evaluated by
the following definitions (i, j = 1,2,3,...n):

Sgn =J&¥ladx , E.n=x,y
9%; = X; =
S = x.3§-¢jdXdy' S5 = IR.¢i dedy, E=xy (4-6)
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Note that the [S“‘] and [K“] sub-matrices are not symmetric. However, since these

matrices have the properties [S"']=[S"‘]T and [K"]=[K’l ]T, the total element
matrices [M° ] and [K‘] are symmetric.

The sub-vectors of the force vector are of order n and are given by their
components (i = 1,2,3,...,n).

Fr=[ fhdxdy+P, @=1234,5 4-7)

For uniform transverse pressure as used in this program, f, = q (the transverse pressure
value), all other f, = 0, and P, are the nodal contributions of the boundary force

conditions along the plate boundaries.

Element Types
4—Node B—Node 9-Node
4 3 4 7 3 4 7 3
P - — Q ©
9
8¢ %6 8 ¢ 6
1 2 1 5 2 1 5 2

Figure 10: Element types and nodal point numbers.

The program allows the user to choose from the threec element types shown in
Figure 10: four-noded linear quadrilateral, eight-noded quadratic quadrilateral, and
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nine-noded quadratic quadrilateral elements. The four, eight, and nine-noded
elements produce element matrices of 20x20, 40x40, and 45x45, respectively.

The interpolation functions used for these elements are isoparametric and
belong to the Lagrange family. The terms of the [S*] matrices are found using Gauss-
Legendre quadrature numerical integration. Full-integration is used for all stiffness
terms except for those terms involving traverse shear coefficients (A,,, A, Ay) in
which a reduced-integration scheme is used. The reduced-integration is performed to
prevent shear-locking effects. J. N. Reddy presents a more complete treatment -f
these subjects [25].

Finite Element Procedure

For static problems, the differential equation becomes a much more simple
series of linear equations because the acceleration vector is zero. In this case, the

following equation applies:
[k fa}={r} (4-8)

In this instance, the element matrices are assembled globally into a banded
matrix. Boundary conditions are then applied to the global equation and the equation
is solved. The resulting vector gives the generalized displacement values in the
following order:

{{“'V’W"l’x"l’y}mv{“vV’W’\I’vW,}w,...} “4-9)
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These displacement values are used to calculate strains and stresses at the Gaussian
points of each element by applying the definitions of strain and constitutive
relationships equation 2-3 from chapter II. The following stresses are calculated at
each lamina interface through the plate thickness at the Gaussian coordinates:

0,:0,:T,y: T Ty
Time-Dependent Formulation

Time-dependent problems require some extra steps in the solution because
they require the solution of a second-order differential equation. This method follows

that presented by Reddy [24,25]. The process requires transforming the equation
shown below into a series of linear equations.

[MI{a}+[k]{A}={F} (4-10)

One way of transforming this equation into a solvable form is by using discrete
time steps in the analysis. The method used in the program is known as the Newmark
integration scheme. A time step (At) is chosen which yields a stable and accurate
solution as described later. For each time step equation 4-9 can be expressed in the
following general discretized form:

[K]{al,,, = {8} 4-11)

where the components are defined as:

[K] =[K]+a,[M]




{#}= {8, +[M{ooal, +a,{a}, +a,{a}) w2
1 1
=g mTaAL & =g

The values for {A}_,{A}. ,and{z'i}.are the initial velocities and accelerations
supplied by the program user. Once the displacement vector at the new time step
{A},., is found by solving equation 4-11, the new accelerations and velocities may
calculated using the following equations:

{a}m = ao({A}.ﬂ -{A}.)-al{A}‘ -az{‘s}_
(o) ), +[0-o), ool

(4-13)

The o and f variables are parameters used in the Newmark scheme to create a
stable and accurate integration solution. There are two widely used pairs for these
parameters which guarantee stability in the analysis.

Linear acceleration method: a=1/2, p=1/6 (4-14)
Constant acceleration method: a=1/2, p=1/4

These two pairs guarantee stability in the time integration scheme, but they do
not necessarily provide accuracy. In order to obtain accurate results, the time step
must be chosen appropriately. In most cases, shorter time steps yield more accurate
approximations than longer ones. The following formula provides one way to choose

an adequate time step.
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At<id? ,/p,D (4-15)

In this formula, d is the minimum distance between any two nodal points, p, is the
transverse inertial term defined in equation 2-12, and D is the lesser of the two
bending stiffness terms D,, and D,, defined in equation 2-10. Care should be given in
choosing too small a time step because of the computational cost of that choice.

With these additional steps, the procedure presented for the static case is
followed. This procedure requires solving a set of linear equations for the
displacement vector and computing then new velocity and acceleration vectors for
each time step. For this reason, the computing expense can become quite high.

Boundary Conditions

Equation 3-37 dictates the boundary condition pairs which must be specified
along the plate edges. When choosing boundary conditions for a plate problem, one
of each pair must be specified at each nodal point.

N,oru,, N_oru,, Q,orw, M ory,, M_ory, (4-16)

The following list describes the applicable force and displacement values for
some commonly used boundary conditions.

1. Simply-Supported Edge
N, =0, N,=0, w=0, M, =0, y,=0 4-17)

2. Hinged Edge - Free in the normal direction
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N,=0, u,=0, w=0, M, =0, y,=0 (4-18)

3. Hinged Edge - Free in the tangential direction

u,=0, N_,=0, w=0, M, =0, ¢, =0 (4-19)

4. Clamped Edge

u,=0, u,=0, w=0, y,=0, y,=0 (4-20)

5. Free Edge

N,=0, N_=0, Q,=0, M, =0, M_=0 (4-21)

6. Line of Symmetry (for symmetrical finite element problems)

u,=0, N_,=0, Q, =0, y,=0, M_=0 (4-22)
Program Information

For implementation of the displacement and force boundary conditions in
COMPLATE, the following information is necessary. By default, all generalized
displacements are assumed to be free to move and all forces are assumed to be zero.
The displacement and force vectors each have five times the number of nodes entries.
The ordering of the displacement and force vectors are shown below:

Displacement Vector — {{u,v,w,\v, W, }w ,{u,v,w,\v‘ Wy }w,}
(4-23)
Force Vector -» {{N,.N,,Q.M,.M, }** {N..N,.Q.M,.M, }**,..}

To change a boundary condition from the default conditions, the user must
supply the position of the displacement or force in its respective vector and the value
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of that condition. For example, to specify a displacement of 10 in the y-direction on
node 3, the user would give 12 for its position in the vector and 10 for its value.

Summary

The basic theory behind the development of COMPLATE has been presented
in the last two chapters. This program is written in the FORTRAN-77 standard for use
on microcomputers although the code is generic and may be used on larger systems.
Appendices B and C provide more information on the program including user
information, sample program input and output data files, and documented source
code.




Overview

In this chapter several numerical examples are presented to validate the
computer code. Although the computer program can analyze more complicated
composite plate shapes and laminate lay-ups, the following cases are chosen because
other solution methods are available for these types of composite plates and loadings.
Two static and one dynamic plate problems are considered. The static problems are
compared against analytical solutions using the Navier series. The dynamic problem
is compared against a solution given in the literature.

The Navier series solution method is presented in Appendix A for the two
plate problems in this chapter. The Navier series is used to find an exact solution to
both the classical plate theory (CPT) and first-order shear deformation theory (FSDT)
plate equations. The CPT solution demonstrates the importance of shear deformation
in the analysis.

The plate used in all three cases is square with sides of length, a, as shown in
figure 11. The loading condition for all three cases is a uniform transverse pressure
applied over the area of the plate surface. The laminate stacking sequence and the
boundary conditions change for the three cases in order to utilize more of the
computer code.
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Figure 11: Plate dimensions and loading for Cases 1, 2, and 3.

For the two static cases, Cases 1 and 2, the following material properties are
used which are representative of composite materials. These particular properties
were introduced in 1969 [15] and have been used by many other author’s since.

E, = 25x 10°psi E, = 1x10%psi
G‘z = G‘g = 0.5 X 106 pSi G” = 0.2 X 106 pSi (5'1)
v,, =0.25 k=%

Case 1: Symmetric Specially-Orthotropic Square Plate under Uniform
Transverse Pressure (Simply-Supported)

For this case, a symmetric specially-orthotropic laminate is chosen for its
laminate property features. The definition of such a laminate is one which exhibits
the following laminate properties.
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Ay=Ay=A,= Bi =D =D, =0 (5-2)

This type of laminate behaves like an orthotropic material for general response
purposes because the laminate stiffness matrix contains the same zero-valued terms as
an orthotropic material. All the bending-twisting coupling terms vanish. For the
calculation of interlaminar stresses, the lamina constitutive relationships are required.
Therefore, a program which is able to analyze orthotropic plates is insufficient.
Because the B matrix is zero and there is no applied in-plane loading, in-plane
displacements decouple from the transverse deflection, w, and the rotations,
v, and y, . This results in no in-plane displacements of the laminate mid-plane (u = v
=0).

For this case, the laminate stacking sequence is [0/90/0] where all three layers
have equal thicknesses, namely h/3. This type of lay-up is called a cross-ply because
the laminate is constructed of only 0 and 90 layers.

This plate is assumed to have simply-supported boundary conditions along all
the edges. This results in the following boundary conditions (ignoring in-plane
boundary conditions).

w(0,y) = w(a,y) = w(x,0) = w(x,b)=0
V. (x,0) = w,(x,b) =y, (0,y) = w,(a,y) =0 (5-3)
M, (0,y) = M, (a,y) = M, (x,0) = M, (x,b) = 0

This case is used to evaluate the effectiveness of each element type compared
to the exact analytical solution so all three element types are used in the analysis.
Also the effect of shear deformation is observed by using three length to thickness
ratios (a/h = 100,10,4).
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Because of this problem's symmetry, only one quarter of the plate is needed for
the analysis. This results in the meshes shown in figure 12.

8 and 9-Noded 4-Noded
Element Meshes Element Mesh
(AB (B.B) (AB) (B.,B)

B R =11 r———T7T 111
| | | 1

| T | 1

| | ! - t

a : (KA) (a‘.n: : (AR) (B‘D:

| | | }

| | | [

1 b e e e e — _J S, i
| pamm— - b= a -

Figure 12: Geometry of FEM mesh for Cases 1 and 3.

The results of this analysis are shown in Table 1. The deflection and stresses

are non-dimensionalized by the definitions given in equation 54. The stresses shown
in the table are calculated at Gaussian points with coordinates defined by A and B in

equation 5-5.

7 in layer 2 (90°)

(54)
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T_=t_(B,A)—- inlayer 3 (0°)
qo2

T, = :,,(A,B)--?; in layer 2 (90°)

0

A= 055283 xa (for2x2Q), 0.56250 x a (for 4x4L)
B= 054717 xa (for2x2Q), 0.93750 x a (for 4x4L) (5-5)

The terms in the "Method"” column of Table 1 refer to following ' :ethods of
analysis:

COMPLATE Results:
2x2Q9- 4 element mesh using 9-noded quadratic elements.
2x2Q8- 4 element mesh using 8-noded quadratic elements.
4x41A4- 16 element mesh using 4-noded linear elements.

Other method results:
CPT- Navier series solution using classical plate theory, Appendix A.
FSDT- Navier series solution using first-order shear deformation theory, Apgndix A
HSDT- Center deflection solution by Reddy using higher-order shear deformation
theory[22].

Navier series solutions utilized 49 terms (m,n = 1...49) - see Appendix A.

The results in Table 1 show that COMPLATE produces results close to those
of the Navier solution using FSDT for coarse meshes using both 8 and 9-noded
quadratic elements. The 4-noded linear element appears to be less accurate. Also
note that the non-dimensionalized deflection, w, is much higher for the cases a’h=10
and 4 than predicted by CPT.
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Table 1: Comparison of maximum deflection and stresses for Case 1 [0/90/0].
Method W G, O Ty Ty Ty
CPT 06660 07908 0.1935 -0.03944 0 0

2x2Q9 0.6704 07931 0.1949 -0.03861 -0.7036  -0.2049

2x2Q8 0.6707 0.7933 0.2015 -0.03757 -0.7118 «0.1999

a/h=100 4x4LA 0.6660 07752 0.1960 -0.03631 -0.6968  -0.1967
HSDT[22]  0.6705

FSDT 0.6697 07905  0.1948  -0.03929  -0.7020  -0.2020

2x2Q9 10234 07577 03076 -0.04555 -0.6865  -0.2336

2x2Q8 10211 07575 03078 -0.04516 -0.6872  -0.2340

ah=10 4x4L4 10276 07386 03096 -0.04332 -0.6758  -0.2247
HSDT[22]  1.0900

FSDT 10219 0.7556  0.3066 -0.04657 -0.6823  -0.2294

2x2Q9  2.6630 06419 06513 -006588 -0.6143  -0.3275

2x2Q8 26559 06419 06513 -0.06544 06143 03278

a/h=4 4x4L4 27025 06238 06494 -006300 -0.6020 -0.3198

HSDT[22] 2.9091

FSDT 2.6595 06408 06494 -0.06725 -0.6104  -0.3230




Case 2: Angle-Ply Square Plate under Uniform Transverse Pressure (Hinged)

For this case, an angle-ply laminate is chosen for its laminate property features.
The definition of such a laminate is one with the stacking sequence [+6/-6], where n is
some integral multiple. This type of laminate has the following laminate property

simplifications:

Ap=Ap=A,=B,=B,; =By =B;;=Dyy=D; =0 (5-6)

The only bending-twisting coupling terms appear in the B matrix. This case is
able to test the program's coupling effect calculations.

For this case, the laminate stacking sequence is [45/-45], where all four layers
have equal thicknesses, namely b/4. This plate is assumed to have hinged edges with
freedom in the tangential direction along the plate boundaries. This results in the
following boundary conditions:

w(0,y) = w(a,y) = w(x,0) = w(x,a)=0

u(0,y) =u(a,y) =v(x,0)=v(x,a)=0

V. (x,0) =y, (x,a)=y,(0,y)=y,(a,y)=0 (5-7)
M, (x,0) =M, (x,a) = M, (0,y) = M, (a,y)=0
N,(x,0)=N,(x,a)=N,(0,y)=N,(a,y)=0

Since all three element types were evaluated in the preceding case, only the 9-
noded quadratic element is used for this case. B cause the laminate stacking

sequence is not symmetric about its mid-plane, the same plate symmetry as in case 1
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does not exist for this case. Therefore a full 4x4 mesh of the entire plate is used as

‘[r— =T 1
AN
JL 41

fr—a
Figure 13: Geometry of FEM mesh for Case 2.

shown in Figure 13.

o

L 1 1

The results of this analysis are shown in Table 2. The deflection and stresses
are non-dimensionalized by the deﬁpitions given in equation 5-8. The stresses shown
in the table are calculated at the Gaussian points coordinates defined by A.

- h
6, =0, A,A,—z-)- 3 (5-8)
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=1.(AA)—
q.2

A= 055283 xa (5-9)

4x4Q09 refers to results from COMPLATE. The other methods are defined in
the same way as in case 1. In addition to tabular results, the stresses are plotted
through the thickness to show a representation of interlaminar stresses in Figures 14 to
16.

The results in Table 2 show that the computer program provides adequate
accuracy compared to the Navier solution of FSDT. Also note that the non-
dimensionalized deflection, w, is much higher for the cases a/h=10 and 4 than

predicted by CPT.




Table 2: Comparison of maximum deflection and stresses for Case 2 [1+45], .

Figure 14: Normal stress, G, , through the plate thickness

near the plate center for Case 2 [+45], .

Method W Iy y xy ”
CPT 04408 02040 02040 -0.1774 0 0
/=100 4x4Q9 04439 02041 02041 -0.1776 -0.01783 -0.01783
FSDT 04433 02039 02039 -0.1773 _-0.01789 _ -0.01789
ah=10 4x4Q9 06925 02011 02011 01751 -001773 -0.01773
FSDT 06917 02007 02007 -0.1746 -0.01788 _ -0.01788
ah=4 4x4Q9 20186 0.1986 0.1986 -0.1731 -001763 -0.01763
FSDT 20164 0.1977 01977 -0.1722 -0.01784 -0.01784
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Figure 15: In-plane shear stress, T, , through the plate thickness
near the plate center for Case 2 [+45], .
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Figure 16: Transverse shear stress, T, through the plate thickness
near the plate center for Case 2 [1+45], .




Case 3: Orthotropic Square Plate under Suddenly Applied Uniform Transverse
Pressure (Simply-Supported)

In order to validate the dynamic analysis routines, a simple orthotropic
laminate is chosen for this case. Results presented by Reddy [23] are used in
comparison. The material properties and time parameters used in this analysis are
also taken from [23]). The following material properties are used.

E, = 52.5x10° %m, E, =2.1x10° %m,
Gy =Gy, =Gy =105x10°N/
¢m + Nac? (5-10)
= = sec
Vi = 0.25 p=810 Y

=5
-=%
and the time parameters for the Newmark scheme (constant-average acceleration) are:

At=5 psec, a= 0.5, p=0.25 (5-11)

Since only one layer exists, the stacking sequence is [0]. The plate edges are
simply-supported and a uniform pressure is suddenly applied at the initial time step
which remains steady throughout the analysis. The boundary conditions are the same
as in Case 1. Symmetry is again utilized and the mesh is the same as the one used
with the 2x2Q9 elements in Case 1. Since a direct comparison is made with the
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literature, the results are not non-dimensionalized. The plate is square with the
following geometric parameters:

a=25cm, h=5cm (5-12)

Table 3 shows the results of the center deflection and the stress at the Gaussian
point nearest to the plate center (A,A) over time compared to the results presented by
Reddy. Since Reddy used a similar procedure, the results coincide exactly except for
a couple of what appear to be typographical errors in his article. This correlation
validates the dynamic routines of the program.




Table 3: Dynamic response, deflection (w) and normal stress (o, ), of a square
orthotropic plate under pulse uniform transverse pressure, Case 3.

time w10 (cm) c, Nem?)
(usec) Reddy[23]  2x2Q9 Reddy{23] 2x2Q9
10 0.0079 0.007963 2.986 2.986
20 0.0398 0.03985 24.64 24.64
40 0.1939 0.1939 1322 132.2
60 0.4303 0.4303 282.1 282.1
80 0.5531 0.5531 359.3 359.3
100 0.5264 0.5264 349.7 349.7
120 0.3705 0.3705 3454 245.4
140 0.1779 0.1779 115.1 115.1
160 0.0353 0.03533 220 220
180 -0.0395 -0.03946 -20.97 -20.97
200 0.1105 0.1105 73.61 73.61
220 0.3296 0.3296 214.1 214.1
240 0.4781 0.4781 316.8 316.8
260 0.5548 0.5548 368.9 368.9
280 0.4797 0.4797 314.5 3145
300 0.2006 0.3006 1949 194.9
320 0.0840 0.08402 59.38 59.38
340 -0.0302 -0.03020 -18.53 -18.53
360 0.0459 0.04587 28.57 28.57




CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The primary objective of this work was to develop a program to analyze
general laminated composite plates under static and dynamic conditions using first-
order shear deformation theory. Several composite plate cases were used to validate
the computer code by comparing the results against other solution methods and results
found in literature. The following conclusions may be drawn from the results:

1. Based on the three cases, the program appears to correctly apply the first-
order shear deformation theory of composite plates to the finite element method.

2. Of the three element types used in the program, the 8 and 9-noded quadratic
elements give the best results with neither one showing clear superiority. The 4-noded
linear element appears to give less than adequate results compared to the two previous
element types.

3. The deflections predicted by the computer program show that shear
deformation effects can be significant beyond the usual range for isotropic materials
(a/h > 10). This is a clear demonstration for the need of a shear deformation theory
for the analysis of all but very thin composite plates.

4. Several authors have presented a complete treatment of classical plate
theory for composite plates. Because of length restrictions in published articles,

FSDT is often presented in abbreviated form. Current composite textbooks give only
68
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a cursory treatment of the first-order shear deformation theory and neglect to detail the
full importance of shear deformation in composite plates. This work represents a full
presentation of this theory combined into a single source.

Recommendations

Based on research in composite plate theories and the development of the
computer program, the following modifications and future research are anticipated:

1. This program should be used in advanced composite classes to give
students insight on the importance of shear deformation in composite plates and to
gain a better understanding of the finite element formulation of composite plate
theories.

2. Ttis program could be used in conjunction with composite testing if funds
are available for future work. The program could be used in developing the size and
stacking sequence of the composite test specimen, and also the program results could
be directly compared with test results.

3. Because the environmental responses of composites are significant, thermal
and hygral (moisture) effects should be incorporated in future revisions of this
program.

4. The program provides easy application of a uniform transverse pressure.
Other types of transverse loading require a significant amount of work on the user's
part. A subroutine should be developed to apply more general types of loading
functions, q = q(x.y).

5. This program provides a good starting point to develop a program based on

higher-order shear deformation theories of composite plates. Because of the
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additional degrees of freedom required in these theories, a microcomputer-based
program appears to be prohibitive at present. However, a program can be developed
on a larger system or in the future on smaller computers as memory management
problems are solved.




APPENDIX A

NAVIER SERIES SOLUTIONS

Navier proposed using a double Fourier series to solve certain differential
equations. This type of series was applied to the solution of plate governing equations
with particular shapes and boundary conditions. Because this solution satisfies the
plate governing equations and meets the appiicable boundary conditions, it is viewed
as an exact solution of the plate theory used in the analysis. Since the series is
infinite, it is impossible to utilize all the terms. However taking enough terms in the
solution (m,n < 50), the solution converges to the significant figures presented as
results in chapter V.

For this analytical solution, general transverse pressure, g(x,y), on a
rectangular plate can be applied by use of the following Navier series:

a(xy)= 33 Qu sin T sin T (A1)

ms=l as] b

The loading terms (Q,,, ) can be found by integrating equation A-1, and then
solving for Q_,. This yields the following result:

Q. = %I;qu(x,y)sin-@?sin-p{y—dydx (A-2)
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Since the cases presented in the results utilize a uniformly applied transverse
pressure (q(x,y) = q,), it 1s convenient to define the loading terms for this condition.

For a uniform transverse pressure, these terms result in the following expression:

Qu = 4q°2 (l—cosmx)(l- cnsmt) (A-3)
mnn

CASE 1: SYMMETRIC SPECIALLY-ORTHOTROPIC LAMINATES

Symmetric specially-orthotropic plates are often used to compare results
because they simplify the governing plate equations. For plates with simply-supported
edges, the analysis process can be accomplished by use of a Navier solution. This
type of plate is defined as being symmetric with respect to the laminate mid-plane and
whose bending-twisting coupling terms vanish. This translates to plate lay-ups with

the following material property simplifications:

Ap=Ayu= Bij =D;;=Dy=A;=0 (A-4)

Classical Plate Theory Solution:

The CPT solution ignores shear deformation and is therefore independent of
thickness effects. This solution is used as a baseline case for very thin plates.
Whitney [33] provides a more complete treatment of this method. The following
boundary conditions are used for the CPT solution of the simply-supported rectangular

plate:




w(0,y) = w(a,y) = w(x,0) = w(x,b)=0

M x.0)=x.b)=20.y)=M@y) = )
—5x—(x:0)- ox (X,b)— ay (Osy) ay (a’Y) 0 (A 5)
M, (0,y)=M,(a,y)=M, (x,0)=M (x,b)=0

With the given material property simplifications, the governing CPT equations

reduce to the following:
o'w o'w
D,, V5 +2(D,2+2D ) ay Dn?w (A-6)

The deflection function is chosen to satisfy the plate boundary conditions and
the simplified CPT governing equations and is given as::

w(x,y) = iiw_, sinﬂg-{sinﬂ (A-7)

m=] a=] b

By applying this function to the CPT equation, the following relation for the
constant W_, is obtained (with R = a/b):

D.
D,

!w
- F Y
jo

W_ =

where =D,m* +2(D,, +2D, )(mnR)* +D,,(nR)* (A-8)

The in-plane stresses in the kth Jayer are defined by the following equations:

0P (x,y,2)= 2255 Lo (Qm? + QP 07R* sin % sin 2
m=] asl mn
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az ® o - (=~ — . X .
6®(x,y.2)= 2233 2m ( g’m2+Qg’anz)Sstm% (A-9)

n mel a=l mn

a’R ~ e mnQ,, mnmx nry
tg’(x,y,z)=—2?- $zy. Y D Cos——cos—
me] as=l ma

Note that CPT assumes that the transverse shear strains are negligible, and

therefore the transverse shear stresses are zero.
First-Order Shear deformation theory Navier solution:

Assume the following Navier Series displacements functions:

w(x,y)= iiw_ sin%itisinﬂ

m=] =] b

V. (xy)= ii%_ cosﬂagsinw— (A-10)

me] g=] b

THESIEDIDI sin 2 cos Y.
m=] a=] a b
These assumed displacement functions meet the following simply-supported
boundary conditions on the plate:

w(0,v)=w(a,y) = w(x,0) = w(x,b)=0
W, (x,0)=wy,(x,b)=y, (0,y)=w,(a,y)=0 (A-11)
M, (0,y)=M,(a,y)=M,(x,0)=M, (x,b)=0

These assumed displaceme: t fields can be substituted into the governing

FSDT equations (340 to 3-43). Since the B matrix terms are zero, the in-plane
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displacements (u,v) become uncoupled from the other generalized displacemente (w,
V..V, ). Under static conditions with only transverse pressure applied, equations 340
to 3-43 reduce to the following equations:

L, Ly LyK¥ot={ 0 (A-12)

L,= Dua: +D3332 +Ag
L,= (Dnz +D33)a-Bn

Ll3 = A55aﬂ (A-13)
L, =Dsa2 +D,B2 +A,,
L,=A_B.

L, = Assa:. +A«Bi

where czm=ﬂ and 13,,,=-r—l£
a b

The solution of this equation yields the constants (W_,,%:_,, %y, ) which

can be substituted into equation A-10 to determine the deflection and rotations of any
point on the plate mid-plane. The plate stresses are defined as:

o®(x,y,2)=-23. 3 (Q¥¥ep . + QEW, B, Jsina xsinp,y

cgk)(x’y’z) = -zzz(——g)q’xﬂan +6g)‘yy-ﬁn )Sin(l-xsinB_y

m=] n=]

0 (x,y,2) = ziiﬁ%’(‘l’:_ﬁ_ +Wy_.a_)cosa_xcosp,y (A-14)

m=] s=l
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W (x,y,2)= ZZ Q¥ (W, +W_B,)sina xcosp,y

m=] a=]

+Q® (W + W_a, )cosa _xsinB,y

t®(x,y,2)= Zz Q¥ (¥y, +W_B, )sina _xcosB,y

m=] p=l

+Q¥ (¥, +W_a,)cosa xsinp,y

CASE 2: ANGLE-PLY LAMINATES [16],

Angle-ply laminated plates are also used to compare results because they allow
the governing plate equations to be simplified, but still include bending-stretching
coupling. With certain boundary conditions, the analysis process does not require a
numerical solution. Angle-ply laminates are defined by a laminate stacking sequence
with fiber orientations alternating between +6 to -0 among consecutive layers. The
code for such laminates is [10], or [+6/-0], , where n is some integer multiple. This
translates to plate lay-ups with the following material property simplifications:

A;=A,=B,,=B,=B,,=B;;=D,; = 23=A45=0 (A-15)

For this analytical solution, general transverse pressure on a square plate is

applied in the same manner as given in equations A-1 to A-3.

axy) =33 sm—smw— (A-16)

m=] p=] b




Classical Plate Theory Solution:

The CPT solution ignores shear deformation and is independent of the plate
thickness effects. This solution is used as a baseline case for very thin plates.
Whitney [33] provides a more complete treatment of this solution. The plate
considered here is rectangular with hinged-edges (free in the tangential direction). In
this case, the following boundary conditions apply along the edges:

w(0,y)=w(a,y)=w(x,0) = w(x,b)=0
u(0,y)=u(a,y)=v(x,0)=v(x,b)=0

ow ow
—(0,y)=—
oy ©.y) oy
N, (0,y)=N_(a,y)=N,, (x,0)= N, (x,b)=0

M, (0,y)=M,(a,y) = M,(x,0)= M, (x,b) =0

ow ow
(3,y)=—(x,0)=—==(x,b)=0 (A-17)

With the material simplifications of angle-ply laminates, the governing CPT
differential equations become:

K,, K K u 0
K, Ky Kyfgve=40 (A-18)
K,, K,, K w q
where:
Kn=4y, 'f:'z""Aas%
K,=(A, +A33)'£5
Ki; =3B, 35:+Ba &

Kn=AnZ+And: (A-19)




Ky =B, &+3By%r

K = D" ﬂ'+2(D|2 +2D33)“3w1 +Dn Q‘

The deflection functions, equation A-20, are chosen to satisfy the plate
boundary conditions and the above simplified CPT governing equation:

u(x,y) = ZZU sm—--cosﬂ

ms} asl b

vxy)=3 3 Vo cos-“l;"isin-“-:y— (A-20)

w(x,y)= iiw_ sin-ﬂrﬁ-sinm

ma] a=] b

By substituting these displacement functions into the CPT equations, the
following matrix equation results:

Ly Ly Ly|(Um| 0

L, L, LyRVat=40 (A-21)
L|3 L23 L33 Wm an

L, =A,al +A,B]

L,=(A,+A)aB,

L,, =-3B,alB, - BB,

Ly, = A0l +A,B2 (A-22)
L, = -B,a’ -3B,a B2

Ly =D,,al +2(D,, +2D,,)alp? +D,,B:




and a

=% and B, =
a

o
.

The solution of these equations yields the constants (U_,,V_, ,W_, ) which
can be substituted into equation A-20 to determine the deflection and rotations of any
point on the plate mid-plane. These constants are also utilized to calculate the plate
stresses. The in-plane stresses in the kth layer are defined by the following equations:

o®(x,y,2)= 3. 3 [(QAPU 0t + QAP VB, ~22Q,, o018, )cosa . xcosB, y

m=] n=l

+(2Wo (@02 +QPB2) - QP (UnB, + ez, )sina xsing,y]

6®(x,y,2) = 3.3 [(QPU 0, + AL V,B, - 220, W,0,01,8, )cosa, xcosB,y

m=] n=l

+{2W (QPa2 +QPB2)- QP (U, + Vet )sinar xsing,y

W@ (xy,2)= 3 3 [(QPU e, +QE VB, - 220, Wee,B, )c0s0 x005B,y

m=] a=]
+{2W . (QocZ + QB2) - T (U B, + Vewer,)siner xsin,y
(A-23)

Again according to CPT, the transverse shear stresses are zero.
First-Order Shear Deformation Theory Solution
The plate considered here is rectangular with hinged-edges (free in the

tangential direction). In this case, the following boundary conditions apply along the
edges:




w(0,y)=w(a,y)=w(x,0)=w(x,b)=0
u(0,y)=u(a,y)=v(x,0)=v(x,b)=0

V. (x,0)=y,(x,b)=v,(0,y) =y, (a,y)=0 (A-24)
M, (0,y)=M,(a,y) =M, (x,0) =M, (x,b)=0
N,(0,y)=N_(a,y)=N_(x,00=N_(x,b)=0

This solution requires five displacement functions. The following Navier
series functions satisfy the FSDT governing plate equations in chapter III and the plate
boundary conditions:

u(x,y)= iiU_ sianuxcos%

v(x,y)= iiVm cos%sin-!-lﬂ

m=] n=} b
—~ . muX .
w(x,y) = §.Z;W_ sstmE;y— (A-25)

v, (x,y)= ii‘l’:m cos % gin Y.

m=] a=] a b
v, (x,y)= ZZ‘%_ sinm;:icos&—:y—
m=] o=l

Substituting these displacement fields into the governing FSDT equations 3-40
to 343 yields:
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where the matrix terms are defined as:

L,= A"az_ +A335i
L,= (Alz "'Ass)a-B-

L,=0
Ls=2Bsa,B,

Ly =Aynag +A,B]
L,=0

Ly = A0, +A,B;
Lu=Asa,

Ly =AuLB.

Lu= Dna:. "’DsaBi +Ag
L= (Dlz +Dj; )aan
Ly = D33a|2n +Dzzﬁ|2. +A,

and ot,,,,=ﬂ y [3,=E.
a b
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(A-26)

(A-27)

The solution of this equation yields the constants (U, V., W_, ¥, %)

which can be substituted into equation A-25 to determine the deflection and rotations

of any point on the plate mid-plane. The stresses may also be found by utilizing these

terms are defined as follows:
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o®(x,y.2)= 3 3 [(QPU_a, +APVLB, + QP (¥enB, + ¥rua, )oosa, x

mul as]
cos,y - (QP (UL, + Vaa. )+ (QP¥:nay + ALY, B.))

sina xsinp,y]

o (x,y,2)= ii[(@g’U_a_ +QEV_B, + Q¥ (¥: B, + ¥y a, ))cosa x

cosB,y — (AL (U LB, + V) + QP na, +QL¥,8.))

sina,xsinP,y]

W@ (x,y,2)= 3 Y [(QVU e, +APVLB, + AP (FenB, + Frua,)oosa,x

m=] a=]
cosB,y - (TR (UB. + Vuo) +2(QP¥ 00 + QW B,))

sina xsinf,y]

t(y:) (X,y,z) = ii[@g) (lem + men)smanxcosﬂny +6§:)(‘¥‘-ﬂ +wman)

m=)] a=]

cosaxsinp,y]

¥ (x,y,2)= ii[ﬁﬁ:’ (Wy o +W_B, )sina_xcosp,y + Q¥ (¥ +W_a,)

cosa,xsinB,y]
(A-28)




APPENDIX B

COMPUTER PROGRAM INFORMATION

COMPLATE Program Overview and Instructions

Nzw

Figure 17: Definition of coordinates on a rectangular plate.

This program was developed to analyze general laminated composite plates of
uniform thickness, h. The program uses first-order shear deformation of laminated
orthotropic plates in the analysis. The results from the program include the laminate
material property matrices, [A], [B], [D], the resulting mid-plane displacements and
rotations (u, v, w, y,, y,) at plate nodal points, the laminate strains at the mid-plane
and on the laminate surfaces, and the interlaminar stresses at lamina interfaces. The
following paragraphs describe the user supplied requirements for the program. Figure
17 shows the coordinate system for an example rectangular plate.
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1. Program Control Parameters

The program uses several parameters to control the scope and output of the
program. TITLE is a one-line output heading used to describe the problem being
analyzed. The next two parameters dictate the element type used in the program. [EL
describes the order of the element (1 - linear, 2 - quadratic). NPE is the number of
nodes per element (4 if IEL = 1, 8 or 9 if IEL = 2). IMESH is the parameter used to
control whether a rectangular mesh is generated (IMESH = 1) or all mesh information
is input for a general shape mesh (IMESH = 0). NPRNT is used to control the printing
of element stiffness matrices and force vectors (0 - not printed, 1 - printed). ITEM
indicates whether the analysis is static (= 0) or dynamic (= 1). The next three
parameters, NTIME, NSTEP and NOZERO, are parameters for the dynamic analysis
case and are describes under that section.

2. Shape of Plate (FEM Mesh)

This program has two methods for generating the plate mesh. Rectangular
plate meshes can be generated by entering the number of divisions between nodal
points along the x and y-axes, NX and NY, and the lengths of each division, DX(T)
and DY(J) in the x and y directions respectively. These divisions do not have to have
uniform lengths because each length is supplied.

General plate shapes require their meshes to be entered by the user. The aser
must provide the number of elements, NEM, the number of nodal points, NNM, the
element connectivity of the nodal points, NOD(LJ), and the coordinates of the nodal
points, X(I) and Y(I). The plate can therefore be any user defined shape including
curved edges, but must have a uniform thickness. The user is encouraged to use other

mesh generation programs to develop general shaped (non-rectangular) meshes.
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3. Element Types

There are three types of quadrilateral isoparametric elements in this program.
Each nodal point in the element has five degrees of freedom or generalized
displacements (u, v, w, y,, ,). The three types of elements are four-node linear,
eight-node quadratic, and nine-node quadratic elements as shown in Figure 18.

4—Node 8—Node 9—Node
4 3 4 7 3 4 7 3
9
8¢ ?26 8 6
1 2 1 5 2 1 5 2

Figure 18: Element types and nodal point numbers.

The four, eight, and nine-noded elements produce element matrices of 20x20, 40x40,
and 45x45, respectively. The order of these matrices is defined by the number of
degrees of freedom per node. IEL and NPE control the type of element used as
described in section 1.

The interpolation functions used for these elements are isoparametric and
belong to the Lagrange family. This allows the element sides to be non-straight (for
quadratic elements). Full-integration is used for all stiffness terms except for those
terms involving traverse shear coefficients (A,,, A,;, A,;) in which a reduced-
integration scheme is used. The reduced-integration is performed to prevent shear-
locking effects.




4. Types of Matenals and Stacking Sequence

This program was developed for general laminated composite plates including
hybrid composites. The user supplies the number of different composite materials,
NMTL in the laminate, and the material properties of each matenal (I):

Elastic moduli - E, - E1(1), E, - E2(T)

Shear moduli - G,,-G12(1), G,; - G13(I), G,, - G23(])

Poisson's Ratio - vy, - ANU12(D)

Material density -  p - RHO(I)

Laminated plates have the following characteristics. The laminate is formed
by stacking a number of orthotropic material layers, NLAY, in a desired sequence.
Each layer, L, can have different principal material orientations defined in degrees
from the x-axis, THETA(L), be made of different materials defined by the material
number I, MTL(L), and have varied thicknesses, TH(L). The program is also able to

analyze isotropic maternals, orthotropic materials and hybrids made of these materials.

5. Displacement on Boundaries and Loading Conditions

This program accommodates general boundary conditions by allowing the user
to specify the number of displacement conditions, NBDY, the location and direction
of the displacement (u, v, w, y,, y,), IBDY(I), and the corresponding value of the
generalized displacements, VBDY(I), for any nodal point.

There are two ways to apply loads to the plate. A uniformly distributed
transverse load can be applied by specifying the magnitude and direction, PO
(positive-upward, negative-downward), of the pressure. Other loads are applied by
specifying the number of specified forces, NSBF, the nodal point location and
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generalized direction, IBSF(I), and magnitude of the load at the nodal points, VBSF(I),
in the form (Nx, Ny, Qz, Mx, My) corresponding to the generalized displacements.

By default, all generalized displacements are assumed to be free to move and
all forces are assumed to be zero. The displacement and force vectors each have five
times the number of nodes entries. The ordering of the displacement and force

vectors are shown below:

Displacement Vector - {{u,v,w,\u, Y, }m"l ,{u,v,w,\y, ,\py}m‘”2 }

Force Vector - {{N,.N,.Q.M,M, }"* [N, N,.Q.M M} ..} @)

To change a boundary condition from the default conditions, the user must
supply the position of the displacement or force in its respective vector and the value
of that condition. For example, to specify a displacement of 10 in the y-direction on
node 3, the user would give 12 for its position in the vector and 10.0 for its value.

One of each of the following boundary condition pairs must be specified along
the plate edges :

N, oru,, N_,oru,, Q orw, M ory,, M,ory, (B-2)

The following list describes the applicable force and displacement values for
some commonly used boundary conditions. The coordinates n and s refer to the
outward normal and the in-plane tangential axes along the plate edges respectively.
For example on an an x-edge (x = a), n corresponds to the x-axis and s corresponds to

the y-axis.
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1. Simply-Supported Edge

N,=0, N_,=0, w=0, M, =0, y,=0 (B-3)

2. Hinged Edge - Free in the normal direction

N,=0, u,=0, w=0, M, =0, y,=0 (B4)

3. Hinged Edge - Free in the tangential direction

u, =0, N,=0, w=0, M, =0, y, =0 (B-5)

4. Clamped Edge

u,=0, u,=0, w=0, ¢y, =0, y, =0 (B-6)

5. Free Edge

N,=0, N,=0, Q,=0, M, =0, M_ =0 B-7)

6. Line of Symmetry (for symmetrical finite element problems)

u,=0, N,=0, Q, =0, wy,=0, M, =0 (B-8)
6. Dynamic Analysis

This program can analyze many different dynamic cases. For the general
dynamic case (ITEM=1), the user must supply the number of time steps, NTIME, the
time step size, DT, alpha from Newmark's method, ALFA, and tlie time step at which
the transverse pressure is removed, NSTP. Additionally, initial generalized
displacements and generalized velocities can be specified to add to the range of
dynamic cases covered by the program. In this case, all the values of the initial
displacements, GFO(I), and velocities, GF1(0) of each nodal point must be entered in
the following order:

Displacement Vector - {{u,v,w,\p, ,wy}ml ,{u,v,w,wx Y, }"m2 }

Velocity Vector - {{u,v,w,q;, R i PR R TR T } (B-9)
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Computer Program Structure (COMPLATE)

Figure 19 shows the general program structure of COMPLATE with all
subroutine calls. The dashed boxes denote optional features of the program depending
on control parameters. This is provided as a reference for understanding the source
code.

MAIN PROGRAM SUBROUTINES
Open Data File
Read Mesh_ | { Mesh Generation (MESH) |
Read Other Data PRE-PROCESSOR

Compute Material Propeties Material Props (MATPROP)

Print Mesh/Material Info

1

Compute Half-Band Width
L

Compute Element Matrices Element Stiffness (STIFF) Shape Functions (SHAPE)
) &

Assemble Global Matrix

1§

Add Force Conditions

Add Displacement Cond's |_} Boundary Conditions(BNDY]

Solve Global Equation | Equation Solver (SOLVE)

b ————
| 1
'

1 ]
___________ ————————-

Print Displacements PROCESSOR

Calculate Stresses/Strains |_] Stresses/Strains (STRESS) Shape Functions (SHAPE)

Formats POST-PROCESSOR

Figure 19: Computer program structure.




Data File Format

The following list describes the input format for COMPLATE. The data is
read in using "free-form" format. This means the data may be separated by spaces or
commas and the only important aspect is the order of variables in the data file. The
following list provides a suggested format for ease in visually reading and adjusting
the input file. Descriptions of all variables used in the program can be found at the
top of the program source code or at the top of each subroutine. DATA LINE(S)
outlines how the input is separated into sections or lines. Some DATA LINES require
more than one actual input line depending on the number of variables to be read in.
The information under the TYPE column describes the data type of the variable: Ann
- character string of nn characters, I - integer (no decimal point); F - fixed-point
(decimal point required). An example input file is given following this list for clarity.

VARIABLE TYPE VARIABLE DESCRIPTION AND NOTES

DATA LINE 1 OUTPUT HEADING - (80 characters)
TITLE A80 Title for output file - description of problem

DATA LINE 2 PROGRAM PARAMETERS
IEL I Element type (1 = four node, 2 = eight or nine node)
NPE I Nodes per element (4 if IEL~1, 8 or 9 if [EL=2)
IMESH 1 Indicator for rectangular mesh generation

(0 - all element information is read in
1 - rectangular mesh is generated)
NPRNT I Indicator for printing the element stiffness matrices
and force vectors (0 - no printing, 1 - printing)

ITEM I Indicator for transient analysis (0 - static, 1 - transient)
NTIME I Total number of time steps (0 for ITEM = 0)

NSTP I Time step number at which loading is removed
NOZERO | Indicator for initial transient load conditions

(0 - zero initial load, 1 - non-zero initial load)
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*¢¢ SKIP LINES 3, 4, AND 5 IF IMESH = 1 (MESH GENERATED) ***

DATA LINE 3

NEM I
NNM I

DATAL S)4
NOD(1,J) F
DATAL S)S

XD, Y() F

READ MESH PARAMETERS

Mumber of elements in the mesh
Number of nodes in the mesh

MESH CONNECTIVITY - NEM lines, NPE per line
Connectivity of I-th element (J = 1,NPE)
NODAL COORDINATES

Global coordinates of I-th node

**+ SKIP LINES 6, 7, AND 8 IF IMESH = 0 (GENERAL MESH) ***

DATA LINE 6

NX 1
NY I

DATA LINE(S) 7
DX() F
DATA LINE(S) 8
DY() F
DATA LINE 9
NMTL I
DATA LINE(S) 10

EI(I)
E2(D)
G12(1)
G13())
G23(D)
ANU12(Ty
RHO(I)

s Ble o Br s oo Bile s Bie s lie -

MESH GENERATION PARAMETERS

Number of element subdivisions along the x-axis
Number of element subdivisions along the y-axis

X-DIVISIONS - IEL*NX Entries

Distance between two nodes along the x-axis
Y-DIVISIONS - IEL*NY Entries

Distance between two nodes along the y-axis
MATERIALS

Number of different materials in the laminate

MATERIAL I PROPERTIES - NMTL lines

Modulus along fiber direction (1-direction)

Modulus transverse to fiber direction (2-direction)
In-plane shear modulus oriented along fiber direction
Shear modulus with respect to 1-3 plane

Shear modulus with respect to 2-3 plane

In-plane Poisson's ratio (1-2 plane)

Material Density




DATA LINE 11 NUMBER OF LAMINA

NLAY I Number of lamina (layers) in the laminate
DATA LINE(S) 12 LAMINA PROPERTIES - NLAY lines

MTL(I) I Matenal number of I-th lamina

THETA(]) F Fiber orientation angle of I-th lamina (in degrees)

TH(I) F Thickness of I-th lamina
DATA LINE 13 UNIFORM TRANSVERSE LOADING

PO F Intensity of uniformly distributed transverse load
DATA LINE 14 SPECIFIED DISPLACEMENTS (cannot be zero)

NBDY I Number of specified generalized displacements
DATA LINE(S) 15 DISPLACEMENTS - NBDY entries

IBDY(T) I Location/direction of specified displacement I

Order - by node number and (u, v, w, y,, w,)

DATA LINE(S) 16 DISPLACEMENT VALUES - NBDY entries

VBDY(D) F Value of displacement corresponding to IBDY(T)
DATA LINE 17 SPECIFIED FORCES

NBSF I Number of specified generalized forces

###+ SKIP LINES 18 AND 19 IF NBSF =0 (NO FORCE CONDITIONS OTHER
THAN TRANSVERSE PRESSURE) ***

DATA S)18 FORCES - NBSF entries

IBSF(I) I Location/direction of specified generalized forces
Order - by node number and (Ny, Ny, Qz, My, My)

DATAL S) 19 FORCE VALUES - NBSF entries, 8 per line

VBSE(I) F Value of specified force corresponding to IBSF(I)




¢¢¢ SKIP LINES 20, 21, AND 22 IF ITEM = 0 (STATIC ANALYSIS) ***

DATA LINE 20 TRANSIENT PARAMETERS
DT F Time step for transient analysis
ALFA F Parameter in Newmark's method

*#* SKIP LINES 21 AND 22 IF NOZERO = 0 (NO INITIAL CONDITIONS) ***

DATA LINE(S) 21 INITIAL DISPLACEMENTS. - NNM*NDF entries
GFO(I) F Initial value of generalized displacement for I-th
degree of freedom (DOF)
DATA S)22 INITIAL VELOCITY - NNM*NDF entries
GF1(I) F Initial value of generalized velocity for I-th DOF
Sample Input Data File

STATIC BENDING OF A SIMPLY SUPPORTED PLATE UNDER UNIFORM LOAD (2X2Q9 MESH)

2 9 1 0 0 1 0 0
2 2
1.25 1.25 1.25 1.25
1.25 1.25 1.25 1.25
1
25.E6 1.E6 0.5E6 0.5E6 0.2E6 0.25 0.3
3
1 0.0 0.033333
1 90.0 0.033334
1 0.0 0.033333
1.0
37
1 2 4 5 7 10 12 15 17 20 22 23 25 26 29
48 50 51 54 73 75 76 79 98 100 101 103 104 108 109
113 114 118 119 123 124 125
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

o
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Sample Output File

The following output corresponds to the previous input file.

STATIC BENDING OF A SIMPLY SUPPORTED PLATE UNDER UNIFORM LOAD (2X2Q9 MESH)

ELEMENT TYPE(1=LINEAR,2=QUADRATIC) = 2 NODES PER ELEMENT= 9
ACTUAL NUMBER OF ELEMENTS IN THE MESH= 4
NUMBFR OF NODES IN THE MESH = 25
DEGREES OF FREEDOM = 5

MATERIAL 1 PROPERTIES:

MODULUS ,E1= 0.25000E+08

MODULUS ,E2= 0.10000E+07

SHEAR MODULUS,G12=- 0.50000E+06
SHEAR MODULUS,G13= 0.50000E+06
SHEAR MODULUS,G23= 0.20000E+06
POISSONS RATIO,NU12= 0.25000E+00
MATERIAL DENSITY,RHO= 0.30000E+00

LAMINATE STACKING SEQUENCE

LAYER  MTL # THETA THICKNESS

1 1 0.00000 0.33333E-01
2 1 90.00000 0.33334E-01
3 1 0.00000 0.33333€-01

TOTAL THICKNESS = 0.10000€+00
LAMINATE PLATE PROPERTIES

A MATRIX TERMS

0.17042E+07 0.25063€E+05 0.00000E+00
0.25063E+05 0.90227E+06 0.00000£+00
0.0000GE+00 0.00000€+00 0.50000€+05

B MATRIX TERMS

0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000£+00

0.00000E+00 0.00000E+00 0.00000E+00
D MATRIX TERMS

0.20143E+04 0.20886E+02 0.00000E+00

0.20886E+02 0.15781E+03 0.00000E+00

0.00000E+00 0.00000E+00 0.41667E+02

SHEAR TERMS: A44, A45, ABS
0.25000E+05 0.00000E+00 0.33333E+05

INERTIAL TERMS I1, 12, I3
0.30000E-01 0.00000E+00 0.25000E-04

NUMBER OF SPECIFIED DISPLACEMENTS= 37




SPECIFED DISPLACEMENTS AND THEIR VALUES FOLLOW:

1

o

]
12
20
25
48

76
100
104
113
119
125

.00000€E+00 2
0.00000€+00 7
0.00000E+00 15
0.00000£+00 22
0.00000E+00 26
0.00000E+00 50

54  0.00000E+00 73
0.00000E+00 79
0.00000e+00 101
0.00000e+00 108
0.00000E+00 114
0.00000E+00 123
0.00000E+00

0
0
0
0
0
0
0
0
0
0
0
0

.00000€+00
.00000E+00
.00000£+00
.00000E+00
.00000£+00
.00000E+00
.00000E+00
.00000£+00
.00000E+00
.00000E+00
.00000€+00
.00000E+00

4
10
17
23
29
51
75
98

103

109

118

124

OO O0OO0DO0OO0ODODOOC O

UNIFORMLY DISTRIBUTED LOAD, PO = 0.10000E+01

NUMBER OF SPECIFIED FORCES= 0
SPECIFIED FORCE DEGREES OF FREEDOM AND THEIR VALUES FOLLOW:

BOOLEAN (CONNECTIVITY) MATRIX-NOD(I,J)

COORDINATES OF THE GLOBAL NODES:

~NUY W

9
11
13
15
17
19
21
23
25

1
2
3
4

OCO0OO0OO0O0OO0OO0O0DO0CODDO0OOO0

1
3
11
13

.00000E+00
.25000€+01
.50000€+01
.12500E+01
.37500E+01
.00000E+00
.25000E+01
.50000€+01
.12500E+01
.37500€+01
.00000€E+00
.25000€+01
.50000£+01

3
5
13
15

13 11
15 13
23 21
25 23

.00000E+00
.00000E+00
.00000€+00
.12500€+01
.12500€+01
.25000E+01
.25000E+01
.25000E+01
.37500E+01
.37500E+01
.50000€+01
.50000E+01
.50000€+01

OO0 O0DO0O0OO0O0ODOODOOO

2
4

12
14

8 12
10 14
18 22
20 24

2 0

4 0

6 0

8 0

10 0
12 0
14 0
16 0
18 0
20 0
22 0
0

HALF BAND WIDTH OF GLOBAL STIFFNESS MATRIX = 65

GENERALIZED DISPLACEMENTS (U,V,W,SX,SY) PER NODE

O O~NTO &WwN =

OO0 OOOO

.00000E+00
.00000£+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

OO0 ODODOO0OO0O

.00000€+00
.00000E+00
.00000E+00
.00000E+00
.00000€+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

[~ N=NeNeRoReNo NN

.67040E-01
.62012€-01
.47771E-01
.25989E-01
.00000E+00
.63455E-01
.58703E-01
.45230E-01
.24611E-01

.00000€£+00
.00000E+00
.00000£+00
.00000€+00
.00000E+00
.00000E+00
.00000E+00
.00000£+00
.00000E+00
.00000E+00
.00000E+00
.00000€+00

6 7
8 9
16 17
18 19
.12500€+01 0.00000E+00
.37500€+01 0.0000CE+00
.00000E+00 0.12500E+01
.25000E+01 0.12500E+01
.50000E+01 0.12500E+01
.12500E+01 0.25000E+01
.37500£+01 0.25000E+01
.00000£+00 0.37500E+01
.25000E+01 0.37500E+01
.50000E+01 0.37500E+01
.12500E+01 0.50000E+01
.37500€+01 0.50000E+01
0.00000E+00  0.0000CE+00
0.78426E-02  0.00000E+00
0.14677E-01  0.00000E+00
0.19509€-01  0.00000E+00
0.21343t-01  0.00000E+00
0.00000E+00  0.59374E-02
0.74048E-02 0.54801E-02
0.13868E-01 0.41977E-02
0.18440E-01 0.22724E-02
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(X-COORD,Y-COORD)
EPSILONX

(

10
11
12

14
15
16
17
18
19
20
21
22
23
24
25

LAMINATE STRAINS AND STRESSES AT GAUSS POINTS

LoC
LAY

M1
80
T0

W L PN 2 e

MI
80
T0

W WM N ==

MI

0
D
T
P

D
T
p

D

8oT

70

G W M N

P

Z-COO0RD

.5283E+00,

0.00000E+00  0.00000E+00
0.00000E+00  0.00000E+00
0.00000E+00  0.00000E+00
0.00000E+00  0.00000E+00
0.00000E+00  0.00000E+0C
0.00000€+00  0.00000E+00
0.00000E+00  0.00000E+00
0.00000€+00  0.00000E+00
0.00000e+00  0.00000E+00
0.00000E+00  0.00000E+00
0.00000E+00  0.00000E+00
0.00000E+00  0.00000E+00
0.00000E+00  0.00000E+00
0.00000E+00  0.00000E+00
0.00000E+00  0.00000E+00
0.00000E+00  0.00000E+00

EPSILONY
SIGMAX

0.5283E+00)

.00000€+00
.51706€-01
.47869€E-01
.36951€-01
.20143E-01
.00000£+00
.29794E-01
.27620€-01
.21398E-01
.11718€-01
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

OCO0OO0OO0O0OO0OOCOO0COO0OO0DO0O00O0

GAMMAXY KAPPAX
STGMAY STGMAXY

COO0OO0OO0DODOCODOO0ODO0OCCO0O0O O

.20175E-01
.00000£+00
.59961€-02
.11279¢t-01
.15090€-01
.16560E-01
.00000E+00
.34017€-02
.64412€-02
.87228E-02
.96390€-02
.00600E+00
.00000€+00
.00000E+00
.00000€+00
.00000E+00

OO 0000000000000

KAPPAY
SIGMAYZ

.00000E+00
.13060€-01
.12039€-01
.91828¢E-02
.49446E-02
.00000E+00
.21322¢-01
.19733E-01
.15228E-01
.82896€-02
.00000E+00
.25620E-01
.23769t-01
.18493€-01
.10180€-01
.00000€+00

KAPPAXY
SIGMAXZ

0.0000E+00 0.0000€E+00 0.0000E+00 0.6283E-02 0.4604E-02 -0.2520E-03
-0.3141£-03 -0.2302E-03 0.1260E-04
0.3141E-03 0.2302E-03 -0.1260E-04

-0.5000€-01
-0.1667E-01
-0.1667E-01
0.1667E-01
0.1667€-01
0.5000E-01

.5283E+400,

-0.7931E+04 -0.3095€+03
-0.2644E+04 -0.1032E+03

-0.1242E+03 -0.
0.1242E+03 0.
0.2644E+04 O.

0.7931E+04 0.3095E+03

0.1972g+01)
0.0000E+00 0.0000E+00 0.0000E+00 0.5419£-02

0.6300E+01 0.4125€+00
0.2100E+01 0.4125E+00

1949£+04 0.2100E+01 0.1031E401
1949E+04 -0.2100E+01 0.1031£+01
1032e+03 -0.2100E+01 0.4125€+00

-0.2710E-03 -0.2839€-03 0.5277E-04
0.2710E-03 0.2839E-03 -0.5277E-04
-0.6862E+04 -0.3525E+03 0.2639E+02 0.4592E+00
-0.2287€+04 -0.1175E+03 0.8795E+01 0.4592E+00
-0.1143E+03 -0.2394E+04 0.8795E+01 0.1148E+01
0.1143E+03 0.2394E+04 -0.8795E+01 0.1148E+01
(.2287€+04 0.1175E+03 -0.8795E+01 0.4592E+00
0.6862E+04 0.3525E+03 -0.2639E+02 0.4592E+00

-0.5000€-01
-0.1667E-01
-0.1667E-01
0.1667E-01
0.1667E-01
0.5000E-01

.1972E+401,

0.5283E+00)
0.0000E+00 0.0000E+00 0.0000E+00 0.5359€-02

-0.2680E-03 -0.1907E-03 0.4316E-04
0.2680E-03 0.1907E-03 -0.4316E-04
-0.6763E+04 -0.2584E+03 0.2158E+02 0.3032E+00
-0.2255E+04 -0.8612E402 0.7194E+01 0.3032E+00
-0.1055€+03 -0.1616E+04 0.7194E+01 0.7579E+00
0.1055e+03 0.1616E+04 -0.7194E+01 0.7579E+00
0.2255E+04 0.8612E+02 -0.7194E+01 0.3032E+00
0.6763E+04 0.2584E+03 -0.2158E+02 0.3032E+00

-0.5000E-01
-0.1667E-01
-0.1667E-01
0.1667E-01
0.1667E-01
0.5000€E-01

-0.6300E+01 0.4125E+00

-0.8524£+01
-0.8524E+01
-0.3410E+01
-0.3410E+01
-0.8524E+01
-0.8524E+01

0.5678E-02 -0.1055E-02

-0.7366E+01
-0.7366E+01
-0.2946E+01
-0.2946£+01
-0.7366E+01
-0.7366E+01

0.3815E-02 -0.8633E-03

-0.3156E+02
-0.3156E+02
-0.1263E+02
-0.1263E+02
-0.3156E+02
-0.3156E+02
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.1972E+01, 0.1972E+01)

0.0000E+00 0.0000€E+00 0.0000E+00 0.4653E-02 0.4676E-02 -0.3595E-02

-0.2327E-03 -0.2338E-03 0.1797€-03

0.2327€-03 0.2338E-03 -0.1797E-03
-0.5000€-01 -0.5890E+04 -0.2927E+03 0.8987€+02 0.4438t+00 -0.2798E+02
.1667€-01 -0.1963E+04 -0.9758E+02 0.2996E+02 0.4438E+00 -0.2798E+02
.1667E-01 -0.9728E+02 -0.1973E+04 0.2996E+72 0.11106+01 -0.1119£+02
.1667€-01  0.9728E+02 0.1973E+04 -0.2996€+02 0.1110€+01 -0.1119€+02
.1667E-01  0.1963E+04 0.9758E+02 -0.2996E+02 (.4438E+00 -0.2798E+02
.5000€-01 0.5890E+04 0.2927E+03 -0.8987€+02 0.4438E+00 -0.2798E+02

‘
[« R o 2N o B o Y o o )

.3028e+01, 0.5283E+00)

0.0000E+00 0.0000E+00 0.0000E+00 0.4011E-02 0.2702€-02 -0.1229E-02

-0.2005€-03 -0.1351E-03 0.6144E-04

0.2005E-03 0.1351€-03 -0.6144F-04
-0.5000€-01 -0.5060E+04 -0.1857F+03 0.3072E+02 0.19106+00 -0.4811F+02
-0.1667E-01 -0.1687E+04 -0.6191E+02 0.1024E+02 0.1910E+00 -0.4811€+02
-0.1667€-01 -0.7830E+02 -0.1146€+04 0.1024E+02 0.4775E+00 -0.1924€+02
0.1667E-01 0.7830E+02 0.1 46E+04 -0.1024E+02 0.47756+00 -0.1924E+02
0.1667E-01 0.1687E+04 0.6191E+02 -0.1024€+02 0.1910€+00 -0.4811E+02
0.5000E-01 0.5060E+04 0.1857E+03 -0.3072E+02 0.1910E+00 -0.4811E+02

.3028e+01, 0.1972E+01)

0.0000E+00 0.0000E+00 9.0000€+00 0.3516E-02 0.3280E-02 -0.5039€-02

-0.1758E-03 -0.1640E-03 0.2520E-03

0.1758E-03 0.1640E-03 -0.2520E-03
-0.5000E-01 -0.4447E+04 -0.2085€+03 0.1260E+03 0.1813E+00 -0.4337E+02
-0.1667E-01 -0.1482E+04 -0.6949E+02 0.4200E+02 0.1813E+00 -0.4337E+02
-0.1667E-01 -0.7244E+02 -0.1385E+04 0.4200E+02 0.4533E+00 -0.1735E+02
0.1667E-01  0.7244E+02 0.1385€+04 -0.4200£E+02 0.4533E+00 -0.1735E+02
0.1667E-01  0.1482E+04 0.6949E+02 -0.4200E+02 0.1813E+00 -0.4337€+02
0.5000€-01  0.4447E+04 0.2085E+03 -0.1260E+03 0.1813E+00 -0.4337E+02

.4472E+01, 0.5283E+00)

0.0000E+00 0.0000E+00 0.0000E+00 0.1266E-02 0.7917E-03 -0.1505E-02

-0.6329E-04 -0.3958E-04 0.7524E-04

0.6329E-04 0.3958E-04 -0.7524E-04
-0.5000€-01 -0.1596E+04 -0.5554E+02 0,3762E+02 0.1455E+00 -0.7036€+02
-0.1667E-01 -0.5321E+03 -0.1852E+02 0.1254E+0Z 0.14556+00 -0.7036€+02
-0.1667E-01 -0.2446E+02 -0.3360E+03 0.1254€+02 0.3639E+00 -0.2814E+02
0.1667E-01  0.2446E+02 0.3360E+03 -0.1254E+02 0.3639E+00 -0.2814E+02
0.1667E-01  0.5321E+03 0.1852E+02 -0.1254E+02 0.1455E+00 -0.7036E+02
0.5000E-C1 0.1596E+04 G.5554E+02 -0.3762E+02 0.1455E+00 -0.7036E+02

.4472E+01, 0.1972E+01)

0.0000€+00 0.0000E+.- 0.0000E+00 0.1121€-02 0.9492E-03 -0.6048E-02

-0.5606E-04 -0.4746E-04 0,3024E-03

0.5606E-04 0.4746E-04 -0.3024E-03
-0.5000E-01 -0.1417E+04 -0.6163E+02 0.1512E+03 0.2988E-01 -0.6418E+02
-0.1667E-01 -0.4723E+03 -0.2054E+02 0.5040€E+02 0.2988E-01 -0.6418E+02
-0.1667E-01 -0.2270E+02 -0.4012E+03 0.5040€E+02 0.7469E-01 -0.2567E+02
0.1667E-01 0.2270E+02 0.4012E+03 -0.5040E+02 0.7469E-01 -0.2567E+02
0.1667E-01  0.4723E+03 0.2054E+02 -0.5040E+02 0.2988E-01 -0.6418E+02
0.5000e-01 0.1417E+04 0.6163E+02 -0.1512E+03 0.2988E-01 -0.6418E+02

.5283E+00, 0.3028E+01)

0.0000E+00 0.0000E+00 0.0000E+00 0.4034E-02 0.6765E-02 -0.1782E-02
-0.2017€-03 -0.3382E-03 0.8912E-04
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0.2017E-03 0.3382E-03 -0.8912E-04
-0.5000E-01 -0.5139€+04 -0.3896E+03 0.4456E+02 -0.1323E+01 -0.4661E+01
-0.1667E-01 -0.1713E+04 -0.1299E+03 0.1485€+02 -0.1323E+01 -0.4661E+01
-0.16678-01 -0.9565E+02 -0.2843E+04 0.1485E+02 -0.3306E+01 -0.1865E+01
0.1667E-01  0.9565E+02 0.2843E+04 -0.1485E+02 -0.3306E+01 -0.1865£+01
0.1667E-01 0.1713E+04 0.1299E+03 -0.1485E+02 -0.1323E+01 -0.4661E+01
0.5000E-01 0.5139E+04 0.3896E+03 -0.4456E+02 -0.1323E+01 -0.4661E+01

.5283E+00, 0.4472e+01)

0.0000E+00 0.0000E+00 0.0000E+00 0.1239E-02 0.3158E-02 -0.2425E-02

-0.6193€-04 -0.1579E-03 0.1213£-03

0.6193E-04 0.1579€-03 0 1213€-03
-C.5000E-01 -0.1592€+04 -0.1738£+03 0.6063€+02 -0.8194E+01 -0.1608E+01
-0.1667E-01 -0.53065+03 -0.5794E+02 0.2021E+02 -0.8194E+01 -0.1608E+01
-0.1667E-01 -0.3389€+02 -0.1324£+04 0.2021E+02 -0.2049E+02 -0.6432E+00
0.1667E-01  0.3389€+02 0.1324E+04 -0.2021E+02 -0.2049€+02 -0.6432E+00
0.1667E-01 0.5306E+03 0.5794E402 -0.2021€+02 -0.8194E+01 -0.1608E+01
0.5000€-01 0.1592€+04 0.1738E+03 -0.6063E+02 -0.8194E+01 -0.1608E+01

OOOOOC

.1972E+01, 0.3028E+01)

0.0000E+00 0.0000F+00 0.0000E+00 0.3510E-02 0.5699€E-02 -0.6142E-02

-0.1755E-03 -0.2849€-03 0.3071E-03

0.1755€-03 0.2849E-03 -0.3071E-03
-0.5000E-01 -0.4470E+04 -0.3297E+03 0.1535E+03 -0.9461E+00 -0.1815E+02
-0.1667E-01 -0.1490E+04 -0.1099€+03 0.5118E+02 -0.9461E+00 -0.1815£+02
-0.1667E-01 -0.8246E+02 -0.2395E+04 0.5118E+02 -0.2365E+01 -0.7258E+01
0.1667E-01  0.8246E+02 0.2395E+04 -0.5118E+02 -0.2365E+01 -0.7258E+01
0.1667E-01 0.1490E+04 0.1099E+03 -0.5118£+02 -0.9461E+00 -0.1815E+02
0.5000E-01 0.4470E+04 0.3297E+03 -0.1535E+03 -0.9461E+00 -0.1815E+02

.1972E+01, 0.4472E+01)

0.0000E+00 0.0000E+00 0.0000E+00 0.1096E-02 0.2723E-02 -0.848BE-02

-0.5479E-04 -0.1361E-03 0.4244E-03

0.5479E-04 0.1361E-03 -0.4244E-03
-0.5000€-01 -0.1407E+04 -0.1502E+03
-0.1667E-01 -0.4691E+03 -0.5007£+02
-0.1667E-01 -0.2968E+02 -0.1142E+04
0.1667E-01 0.2968E+02 0.1142E+04 -
0.1667E-01  0.4691E+03 0.5007€+02 -
0.5000E-01  0.1407E+04 0.1502€+03 -

.2122E+03 -0.7229E+01 -0.6760E+01
.7074E+02 -0.7229E+01 -0.6760E+01
.7074E+02 -0.1807€+02 -0.2704E+C!1
.7074E+02 -0.1807E+02 -0.2704€+01
.7074E+02 -0.7229E+01 -0.6760E+01
.2122E+03 -0.7229€+01 -0.6760€+01

[= N NeNe o)

.3028E+01, 0.3028E+01)

0.0000E+00 0.0000€E+00 0.0000E+00 0.2727E-02 0.4125E-02 -0.8732E-02

-0.1364E-03 -0.2062E-03 0.4366E-03

0.1364E-03 0.2062E-03 -0.4366E-03
-0.5000E-01 -0.3470E+04 -0.2409E+03 0.2183E+03 -0.3552E+00 -0.2968E+02
-0.1667E-01 -0.1157E+04 -0.8031E+02 0.7277E+02 -0.3552E+00 -0.2968E+02
-0.1667E-01 -0.6280E+02 -0.1734E+04 0.7277€+02 -0.8881E+00 -0.1187E+02
0.1667E-01  0.6280E+02 0.1734E+04 -0.7277E+02 -0.8881E+00 -0.1187E+02
0.1667E-01 0.1157E+04 0.8031E+02 -0.7277E+02 -0.3552E+00 -0.2968E+02
0.5000E-01  0.3470E+04 0.2409E+03 -0.2183E+03 -0.3552E+00 -0.2968E+02

.3028E+01, 0.4472t+01)

0.0000E+00 0.0000E+00 0.0C00E+00 0.8835E-03 0.2059E-02 -0.1239€-01
-0.4418E-04 -0.1029E-03 0.6196E-03
0.4418E-04 0.1029€-03 -0.6196E-03
-0.5000E-01 -0.1133E+04 -0.1143E+03 0.3098E+03 -0.5192E+01 -0.1112E+02
-0.1667E-01 -0.3777E+03 -0.3809E+02 0.1033E+03 -0.5192E+01 -0.1112E+02
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-0.1667E-01
0.1667E-01
0.1667€-01
0.5000E-01

-0.2336€+02
0.2336€+02
0.3777€+03
0.1133E+04

-0.8637€+03 0.1033€+03 -0.1298E+02 -0.4450E+01
0.8637E+03 -0.1033E+03 -0.1298E+02 -0.4450€+01
0.3809€+02 -0.1033E+03 -0.5192E+01 -0.1112E+02
0.1143E+03 -0.3098E+03 -0.5192E+01 -0.1112E+02

( 0.4472e+01, 0.3028E+01)

MID 0.0000E+00 0.0000E+00 0.0000E+00 0.9018£-03 0.1233E-02 -0.1057E-01
BOT  -0.4509€-04 -0.6165E-04 0.5287E-03

TOP 0.4509E-04 0.6165E-04 -0.5287E-03

1 -0.5000E-01 -0.1146E+04 -0.7310E+02 0.2643E+03 0.7850E-01 -0.4947g+02
1 -0.1667E-01 -0.3819E+03 -0.2437E+02 0.8811E+02 0.7850E-01 -0.4947E+02
2 -0.1667E-01 -0.2022E+02 -0.5188E+03 0.8811E+02 0.1963E+00 -0.1979€+02
2 0.1667E-01 0.2022e+02 0.5188E+03 -0.8811€+02 0.1963E+00 -0.1979€+02
3 0.1667€-01 0.3819e+03 0.2437t+02 -0.8811E+02 0.7850E-01 -0.4947E+02
3 0.5000E-01 0.1146E+04 0.7310E+02 -0.2643E+03 0.7850E-01 -0.4947E+402

( 0.4472E+01, 0.4472E+401)

MID 0.0000E+00 0.0000E+00 0.0000E+00 0.3065E-03 0.6503E-03 -0.1545E-01
BOT  -0.1533E-04 -0.3251E-04 0.7723E-03

ToP 0.1533E-04 0.3251E-04 -0.7723E-03

1 -0.5000E-01 -0.3923E+03 -0.3644E+02 0.3861E+03 -0.2025E+01 -0.2162E+02
1 -0.1667E£-01 -0.1308E+03 -0.1215E+02 0.1287E+03 -0.2025E+01 -0.2162E+02
2 -0.1667E-01 -0.7838E+01 -0.2729E+03 0.1287E+03 -0.5063E+01 -0.8647E+01
2 0.1667E-01 0.7838E+01 0.2729E+03 -0.1287€+03 -0.5063E+01 -0.8647E+01
3 0.1667E-01 0.1308t+03 0.1215E+02 -0.1287E+03 -0.2025E+01 -0.2162E+02
3 0.5000E-01 0.3923E+03 0.3644E+02 -0.3861E+03 -0.2025E+01 -0.2162E+02
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APPENDIX C

COMPLATE - COMPUTER PROGRAM SOURCE CODE

COMPUTER PROGRAM COMPLATE
(STATIC AND TRANSIENT ANALYSIS OF COMPOSITE PLATES)

Revision of program PLATE by J.N. Reddy for orthotropic plates
Source: Reddy, J.N. "Introduction to the Finite Element Method"®,
McGraw-Hill, New York (1984).

Revision by: Brett A. Pauer, The Ohio State University

....................................................................

DESCRIPTION OF THE VARIABLES

A(1,d)...... EXTENSIONAL STIFFNESS MATRIX (I,J=1,2,3)

ACK,L)...... SHEAR TERMS OF STIFFNESS MATRIX (K,L=4,5)

AO,A1,A2,A3,A4.. PARAMETERS IN THE TIME-APPROXIMATION SCHEME

AK..olll, SHEAR CORRECTION COEFFICIENT

ALFA........ PARAMETER IN THE NEWMARK SCHEME

ANUI2(1)....POISSON'S RATIO OF MATERIAL

B(I,d)...... COUPLING STIFFNESS MATRIX (I,J=1,2,3)

BETA........ PARAMETER IN THE NEWMARK SCHEME

D(I,d)...... BENDING STIFFNESS MATRIX (I,J=1,2,3)

DX(I),DY(I).DISTANCE BETWEEN NODES IN X,Y DIRECTIONS FOR MESH
GENERATION

1) TIME INCREMENT IN THE TRANSIENT ANALYSIS

E1(I),E2(I).ELASTIC MODULI OF MATERIAL I

ELP(D)...... ELEMENT FORCE VECTOR

ELXY(I,J)...ELEMENT NODE COORDINATES OF ELEMENT NODE 1
J=1 FOR X-COORD, J=2 FOR Y-COQRD
G12(1),623(1),G13(1)..SHEAR MODULI OF MATERIAL I

GF(D)....... GLOBAL FORCE VECTOR; SOLUTION VECTOR FROM 'SOLVE’

GFO(I)...... SOLUTION VECTOR AT CURRENT TIME

GFIC(I)...... FIRST TIME DERIVATIVE OF THE SOLUTION (VELOCITY) .

GF2(I)...... SECOND TIME DERIVATIVE OF THE SOLUTION (ACCELERATION).

GSTIF(N,M)..GLOBAL STIFFNESS MATRIX (IN BANDED FORM)

Hooivvnnnns THICKNESS OF THE PLATE

1BDY(I)..... LOCATION AND DIRECTION OF SPECIFIED GLOBAL
DISPLACEMENTS

IBSF(I)..... LOCATION AND DIRECTION OF SPECIFIED NONZERQO GLOBAL
FORCES

IEL......... INDICATOR FOR THE ELEMENT TYPE:

IEL=1, 4-NODE ELEMENT
IEL=2, 8- OR 9-NODE ELEMENT

100
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vedY(I)..... VALUES OF THE DISPLACEMENTS CORRESPONDING TO IBDY(I) .
VBSF(I)..... VALUES QOF SPECIFIED FORCES CORRESPONDING TO IBSF(I)
WO,W1,W2....ARRAYS CORRESPONDING TO GFO,GF1,GF2 IN AN ELEMENT
X(I),Y(I)...X AND Y COORDINATES OF GLOBAL NODE I

.....................................................................

C IMESH....... INDICATOR FOR MESH GENERATION
C (0-READ IN, 1-SQUARE MESH IS GENERATED)
¢ ITEM........ INDICATOR FOR TRANSIENT ANALYSIS (1-YES, 0-NO)
C MTL(L)...... MATERIAL NUMBER OF LAYER L
¢ NBDY........ TOTAL NUMBER OF SPECIFIED DEGREES OF FREEDOM
C NBSF........ TOTAL NUMBER OF SPECIFIED NONZERO FORCES
c NCMAX....... VALUE OF THE COLUMN-DIMENSION OF GSTIF
¢ NOF......... NUMBER OF DEGREES OF FREEDOM PER NODE (U,v.W,SX,SY)
C NEM......... NUMBER OF ELEMENTS .
C NEQ......... TOTAL NUMBER OF DEGREES OF FREEDOM (NODESxNODAL DOF) .
C NHBW........ HALF-BAND WIDTH OF GLOBAL STIFFNESS MATRIX
¢ NLAY........ NUMBER OF LAYERS IN THE LAMINATE
C NMTL........ NUMBER OF DIFFERENT MATERIALS IN THE LAMINATE
¢ NN.......... NUMBER OF DEGREES OF FREEDOM PER NODE
¢ (NODES PER ELEMENT x NODAL DOF)
C NNM......... NUMBER OF GLOBAL NODES
‘ C NOD(I,J)....ELEMENT CONNECTIVITY MATRIX
: c NOZERO...... INDICATOR FOR ZERO(NOZERO=0) OR NONZERO(NOZERO=1)
| C INITIAL CONDITIONS FOR TRANSIENT ANALYSIS
| ¢ NPE......... NUMBER OF NODES PER ELEMENT (4, 8 OR 9)
¢ NPRNT....... INDICATOR FOR PRINTING ELEMENT MATRICES AND FORCE
C VECTORS (1-PRINT, 0-00 NOT PRINT)
¢ NRMAX....... VALUE OF THE ROW-DIMENSION OF GSTIF
C NSTP........ TIME STEP AT WHICH THE LOAD IS REMOVED FROM THE
C PLATE (IN THE TRANSIENT ANALYSIS)
c NT.......... CURRENT TIME STEP NUMBER IN THE TRANSIENT ANALYSIS
¢ NTIME....... NUMBER OF TIME STEPS IN THE TRANSIENT ANALYSIS .
c ) S NUMBER OF DIVISIONS ALONG X-AXIS FOR MESH GENERATION .
c NY.......... NUMBER OF DIVISIONS ALONG Y-AXIS FOR MESH GENERATION .
¢ PO.......... INTENSITY OF APPLIED TRANSVERSE UNIFORM PRESSURE
C QBAR(I,J,L).TRANSFORMED STRESS-STRAIN MATRIX OF LAYER L
c RHO(I)...... DENSITY OF MATERIAL I
¢ STIF(N,M)...ELEMENT STIFFNESS MATRIX
¢ Toieaiaain TIME VARIABLE IN THE TRANSIENT ANALYSIS
¢ TH(L)....... THICKNESS OF LAYER L
o THETA(L)....FIBER DIRECTION ORIENTATION OF LAYER L
c TITLE....... TITLE FROM INPUT DATA FILE
C
¢
c
c
c
C
¢

CHARACTER DATFILE*20,0UTPTF*20

IMPLICIT REAL*8(A-H,0-2)
|
% DIMENSION GSTIF(1000,200),GF(500),GF0(500),6F1(500),GF2(500),

* vBDY(400),1BDY(400),VBSF(400),IBSF(400),TITLE(20),
* £1(20),£2(20),G12(20),623(20),613(20),ANU12(20),

* RHO(20) ,MTL(20),THETA(20),TH(20),QBAR(5,5,20)
COMMON/STF/ELXY(9,2),STIF(80,80),ELP(80),W0(80),W1(80),W2(80),
* A(5,5),8(3,3),D0(3,3),A0,A1,A2,A3,A4,RHO1, RHOZ, RHO3

COMMON/MSH/NOD(200,9),X(225),Y(225),DX(15),DY(15)
DATA NDF,NRMAX,NCMAX/5,1000,200/

P1=3.14159265358

WRITE(*,'(A27)') ' INPUT THE *.DAT FILE NAME °
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READ(*, ' (A20)') DATFILE
WRITE(*,'(A27)') * TYPE THE OUTPUT FILE NAME °
READ(*,'(A20)") OQUTPTF

IPRFIL=1
IWRITE=2

OPEN (UNIT=IPRFIL,STATUS='0LD',FORM='FORMATTED' ,FILE=DATFILE)
OPEN (UNIT=IWRITE,STATUS='NEW', FORM="FORMATTED' FILE=QUTPTF)

................................................................

Read title and control parameters for the program

READ(1,260) TITLE
READ(1,*) IEL,NPE,IMESH, NPRNT, ITEM,NTIME NSTP NOZERO

General Mesh - defined by element connectivity and nodal points

IF (IMESH.EQ.0) THEN
READ(1,*) NEM, NNM
DO 10 I=1,NEM
10 READ(1,*) (NOD(I,J),J=1,NPE)
READ(1,*) (X(I),Y(I),I=1,NNM)
END IF

Rectangular Generated Mesh - generated by defining number of element
subdivisions and length of subdivisions in X and Y directions

20 IF (IMESH.EQ.1) THEN
READ(1,*) NX,NY
NX1=IEL*NX
NY1=TEL*NY
READ(1,*) (DX(I),I=1,NX1)
READ(1,*) (DY(I),I=1,NY1)
CALL MESH(TEL,NX,NY NPE, NNM, NEM)
END IF

Read the properties of materials used in the plate

30 READ(1,*) NMTL
00 32 I=1,NMTL
32 READ(1,*) EI1(I),E2(I),6G12(1),613(1),G23(I),ANU12(1),RHO(I)

Read the laminate stacking sequence or lay-up

READ(1,*) NLAY
D0 34 I-1,NLAY
34 READ(1,*) MTL(I),THETACI),TH(I)

Read pressure, specified forces, and specified displacements

READ(1.*) PO

READ(1,*) NBDY

READ(1,*) (IBDY(I),I=1,NBDY)
READ(1,*) (vBDY(I),I=-1,NBDY)
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READ(1,*) NBSF
IF (NBSF.NE.O) THEN
READ(1,*) (IBSF(1),I=1,NBSF)
READ(1,*) (VBSF(I),I=1,NBSF)
END IF

Transient analysis information is read

35 IF (ITEM.EQ.1) THEN
READ(1,*) DT,ALFA

Non-zero initial displacements and velocities

IF (NOZERO.EQ.1) THEN
NEQ=NNM*NDF
READ(1,*) (GFO(I),I=1,NEQ)
READ(1,*) (GF1(1),I=1,NEQ)
END IF

Time Integration parameters (Newmark scheme)

36 BETA=0.25*(0.5+ALFA)**2
DT2=DT*DT
AO=1.0/BETA/DT2
A2=1.0/BETA/DT
Al=ALFA*A2
A3=0.5/BETA-1.0
Ad4=ALFA/BETA-1.0

Initialize disp., vel. and accel. vectors if not specified

IF(NGZERO.EQ.0) THEN
00 38 I=1,NEQ
GFO(I)=0.0
GF1(1)=0.0
GF2(1)=0.0
38 CONTINUE
END IF
END IF

PROCESSOR UNIT

................................................................

Compute total DOF's °'NEQ', and element DOF's 'NN'

40 NEQ=NNM*NDF
NN=NPE*NDF

Compute the plate material stiffness and inertial properties

CALL MATPROP(E1,E2,G12,613,G23,ANU12,~LAY MTL,THETA,RHO,TH,A,B,D,
* QBAR,H,RHO1,RH0Z, RHO3)

Print the program parameters and the mesh information

WRITE(2,260) TITLE
WRITE(2,310) IEL,NPE
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WRITE(2,320) NEM, NKM NDF
Print the material properties and stacking sequence

00 50 I=1,NMTL
50 WRITE(2,330) I,E1(I),E2(I1),G12(1),G13(I),G23(1),ANU12(1), RHO(I)
WRITE(2.326)
WRITE(2,327)
DO 55 I=1,NLAY
55  WRITE(2,328) I,MTL(I),THETA(I)*180.0/PI TH(I)
WRITE(2,329) H

Print the A, B, and D matrices and inertial terms

WRITE(2,331)

WRITE(2,332)

WRITE(2,325) (A(1.,J),d=1,3)
WRITE(Z2,325) (A(2,d),d=1,3)
WRITE(2,325) (A(3,J),d=1,3)
WRITE(2,334)

WRITE(2,325) (B(1,J).d=1,3)
WRITE(2,325) (B(2,J),d=1,3)
WRITE(2,325) (B(3,d),J=1,3)
WRITE(2,336)

WRITE(Z2,325) (D(1,J),J=1.3)
WRITE(2,325) (D(2,4),d=1,3)
WRITE(2,325) (D(3,d),J=1,3)
WRITE(2,338)

WRITE(2,325) A(4,4),A(4,5),A(5,5)
WRITE(2,339)

WRITE(2,325) RHO1,RHO2,RHO3

Print specified displacements, pressure and specified forces

WRITE(2,345) NBDY

WRITE(2,280) (IBDY(I).-BJY(I),I=1,NBDY)
WRITE(2,342) PO

WRITE(2,350) NBSF

WRITE(2,280) (IBSF(I),VBSF(I),I=1,6NBSF)
WRITE(2,360)

Print element connectivity and nodal point coordinates

DO 60 I=1,NEM

60 WRITE(2,270) I,(NOD(I.J),J=1,NPE)
WRITE(2,370)
WRITE(2,375) (1,X(1),Y(1),I=1,NNM)

Compute the half-band width 'NHBW' -f global stiffness matrix

NHBW=0
DO 70 N=1,NEM
DO 70 I=1,NPE
00 70 J=~1,NPE
NW=(TABS(NOD(N,I)-NOD(N,J))+1)*NDF
IF (NHBW.LT.NW) NHBW=NW
70 CONTINUE
WRITE(2,400)NHBW
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T=0.0
If (ITEM.EQ.1) WRITE(Z2,460) DT ,ALFA,BETA AQ,AL1,A2, A3, A4

C-eenees DO-Loop on number of time steps begins here ----------------

DO 220 NT=1,NTIME
IF (ITEM.EQ.1.AND.NT.GE.NSTP) P0=0.0

Initialize the global stiffness matrix and force vector

e NeNel

DO 80 I=-1,.NEQ
GF(1)=0.0
00 80 J=1,NHBW
80 GSTIF(1,J)=0.0

Convert global information to the element level

s NaNel

DO 130 N=1,NEM
L=0
D0 90 I=-1,NPE
NI=NOD(N,I)
ELXY(I,1)=X(NI)
ELXY(I,2)=Y(NI)
LI=(NI-1)*NDF
D0 90 J=1,NDF
LI=LI+1
L=L+1
WO(L)=GFO(LI)
W1(L)=GF1(LI)
W2(L)=GF2(LI)
90 CONTINUE
C
C Compute the element stiffness and mass matrices
C
CALL STIFF(IEL,NPE,NN,PO,ITEM, NT,NOZERO)
IF (NPRNT.EQ.1) THEN
WRITE(2,380)
DO 100 I-1,NN
100 WRITE (2,300) (STIF(I,J),J=1.NN)
WRITE(2,410)
WRITE(2,300) (ELP(I),I=1,NN)
WRITE(2,410)
END IF
C
C Assemble element stiffness matrices to get global stiffness matrix
C
DO 130 I=1,NPE
NR=(NOD(N,1)-1)*NDF
00 130 II=1,NDF
NR=NR+1
L=(I1-1)*NDF+11
GF(NR)=GF (NR)+ELP(L)
DO 130 J=1,NPE
NCL=(NOD(N,J)-1)*NDF
DO 130 JJ=1,NDF
M=(J-1)*NDF+JJ
NC=NCL+JJ-NR+1
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IF (NC.GT.0) GSTIF(NR,NC)=GSTIF(NR,NC)+STIF(L M)
130  CONTINUE

The global system equations are now ready for implementing the
force and displacement boundary conditions

IF ((NBSF.GT.0).AND.(NOZERO.EQ.0.OR.ITEM.EQ.0)) THEN
DO 140 I=1,NBSF
NB=I1BSF(I)
GF (NB)=GF(NB)+VBSF(I)
140 CONTINUE
END IF
145  CALL BNDY(NRMAX, NCMAX,LNEQ,NHBW,GSTIF,GF,NBDY,IBDY,VBDY)

Call subroutine SOLVE to solve the global system of equations
(the solution is returned in GF(I))

CALL SOLVE (NRMAX,NCMAX,NEQ,NHBW,GSTIF,GF,0)
IF (ITEM.EQ.0) GOTO 180

Calculate the second time derivative when initial conditions
are non-zero

IF ((NOZERO.EQ.0).0R.(NT.GT.1)) GOTO 160
00 150 I=1,NEQ
150 GF2(I)=GF(I)
GOTO 210

Calculate new velocities and accelerations

160 T=T+DT
00 170 I=1.NEQ
GFO(I)=A0*(GF(I)-GFO(I))-A2*GF1(1)-A3*GF2(I)
GF1(I)=GF1(I1)+DT*(1.0-ALFA)Y*GF2(1)+DT*ALFA*GFO(I)
GF2(1)=GF0(I1)
GFO(I)=GF(I)
170 CONTINUE

Print the time step and resulting generalized displacements
WRITE(2,470) T

180 WRITE(2,480)
WRITE(2,490)(((I+4)/NDF),GF(1),GF(I+1),GF(I+2),GF(I43),

* GF(I+4),1=1,NEQ,NDF)
WRITE(2,410)
POSTPROCE é SOR '.U & i T
Compute strains and stresses (at the Gauss points)
WRITE(2,440)
WRITE(2,450)
DO 200 N=1,NEM
L=0

D0 190 I=1,NPE
NI=-NOD(N,1)
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ELXY(I,1)=X(NI)
ELXY(I,2)=Y(NI)
LI=(NI-1)*NDF
D0 190 J=1,NDF
LI=L1+]
L=L+1
WO(L)=GF(LI)
190 CONTINUE
CALL STRESS (NPE,NDF,IEL,ELXY,WO,QBAR, NLAY,TH,H)
200  CONTINUE

IF(ITEM.EQ.0) GOTO 230
210 WRITE(2,390)
220 CONTINUE

------- End of DO-Loop on the numb:r of time steps ---------------

230 STOP

----------------------------------------------------------------

----------------------------------------------------------------

260 FORMAT(20A4)

270 FORMAT(6X,15,2X,915)

280 FORMAT((8X,3(2X.14,2X.E12.5)))

300 FORMAT(5(2X,E12.5))

310 FORMAT(/,5X,'ELEMENT TYPE(1=LINEAR,2=QUADRATIC) =',12,5X,
*' NODES PER ELEMENT=',12)

320 FORMAT(10X,'ACTUAL NUMBER OF ELEMENTS IN THE MESH=', 13,
*/,10X, "NUMBER OF NODES IN THE MESH =', I3,

*/,10X, 'DEGREES OF FREEDOM =',12,/)

325 FORMAT(7X,3(3X,E12.5))

326 FORMAT(/,5X,'LAMINATE STACKING SEQUENCE')

327 FORMAT(/,8X,'LAYER',3X,'MTL #',4X, 'THETA',5X, 'THICKNESS')

328 FORMAT(8X.I3,6X.12,2X.F10.5,2X.E12.5)

329 FORMAT(/,8X,'TOTAL THICKNESS =',E12.5)

330 FORMAT(5X, 'MATERIAL ',12,' PROPERTIES:',/,10X,'MODULUS,El1=', E12.5,
*/,10X, 'MODULUS,E2=" ,E12.5,/,10X, ' SHEAR MODULUS,G12=' ,E12.5,
*/,10X, ' SHEAR MODULUS,G13~',E12.5,/,10X, ' SHEAR MODULUS,G23~',E12.5,
*/.10X, 'POISSONS RATIO,NU12=',E12.5,

*/,10X, "MATERIAL DENSITY,RHO=',E12.5,/)

331 FORMAT(/,5X,'LAMINATE PLATE PROPERTIES')

332 FORMAT(/,8X,'A MATRIX TERMS')

334 FORMAT(/,8X,'B MATRIX TERMS')

336 FORMAT(/,8X,'D MATRIX TERMS')

338 FORMAT(/,8X,"SHEAR TERMS: A44, A45,6 A55')

339 FORMAT(/,8X,'INERTIAL TERMS RHO1, RHO2, RHO3')

342 FORMAT(/,5X,"UNIFORMLY DISTRIBUTED LOAD, PO =',E12.5)

345 FORMAT(/,5X, 'NUMBER OF SPECIFIED DISPLACEMENTS=',IS,
*/,5X,'SPECIFED DISPLACEMENTS AND THEIR VALUES FOLLOW:')

350 FORMAT(/,5X,'NUMBER OF SPECIFIED FORCES=',I4,/,5X,
*'SPECIFIED FORCE DEGREES OF FREEDOM AND THEIR VALUES FOLLOW:')

360 FORMAT(/,5X,'BOOLEAN (CONNECTIVITY) MATRIX-NOD(I,J)'./)

370 FORMAT(/,5X,'COORDINATES OF THE GLOBAL NODES:'./)

375 FORMAT(2(2X,14,3X,E12.5,3X,E12.5))

380 FORMAT(/,5X,'ELEMENT STIFFNESS AND FORCE MATRICES:',/)

390 FORMAT(120(':'),//)
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400 FORMAT(/,5X, 'HALF BAND WIDTH OF GLOBAL STIFFNESS MATRIX = * 15,/)

410 FORMAT(//)

440 FORMAT(S5X, "'LAMINATE STRAINS AND STRESSES AT GAUSS POINTS',/)

450 FORMAT(1X,'(X-COORD,Y-COORD)',
*/,2X,"L0C" ,5X, "EPSTLONX " ,4X, "EPSTLONY" ,5X, ' GAMMAXY * 5X,
*"KAPPAX',6X, ' KAPPAY' 6X, KAPPAXY',/,2X, LAY' 4X,'2-COORD",6X,
*'SIGMAX',6X, ' SIGMAY' ,7X, TAUXY' ,7X, 'TAUYZ' ,7X, 'TAUXZ')

460 FORMAT(/,5X,'DT=',E10.4,5X, 'ALFA~"' ,E10.4,5X, 'BETA=",E10.4,/,10X,
*'TEMPORAL PARAMETERS AO,A1,A2,A3,A4:' 5E12.4,/)

470 FORMAT(/,5X, 'TIME=',E10.3,/)

480 FORMAT(/,5X,'GENERALIZED DISPLACEMENTS (U,V,W,SX,SY) PER NQDE',/)

490 FORMAT(2X,I14,2X,E12.5,2X,E12.5,2X,E12.5,2X,E12.5,2X,E12.5)

END
¢
C O RRRRA R AN AR AR RN R R AN RN RN R AR AR RSN R AR AR R R AR RRRRNA
c~* SUBROUTINES *

c WRRRA RN R R RN RN R R R AR AR AR AN AR RN R R RN R R AR AN AN AR A AR AR RN AR AT A RNRR AR RN

c
SUBROUTINE MATPROP(E1,£2,G12,G13,G23,ANU12,NLAY MTL,THETA,RHO,
* T.A,B,0,0BAR,H,RHO1,RHOZ, RHO3)

---------------------------------------------------------------------

. THIS SUBROUTINE CALCULATES THE Q AND QBAR MATRICES FOR EACH LAYER .
. AND THE LAMINATE MATERIAL PROPERTY MATRICES A(I,J),B(1.J),D(1,J)
. AND THE INERTIAL TERMS RHO1,RHOZ,RHO3

A(LLd)...... EXTENSIONAL STIFFNESS MATRIX (1,J=1,2,3)
ACK,L)...... SHEAR TERMS OF STIFFNESS MATRIX (K,L=4,5)
AK........l. SHEAR CORRECTION COEFFICIENT

AMM ANN..... SINE AND COSINE OF FIBER ORIENTATION °THETA®
ANU12(1),ANU21(I)...POISSON RATIOS OF MATERIAL

ATOL........ ZERQ TOLERANCE OF STIFFNESS TERMS COMPARED OTHERS
B(I,d)...... COUPLING STIFFNESS MATRIX (1,J=1,2,3)
D(I,d)...... BENDING STIFFNESS MATRIX (1,J=1,2,3)

E1(1),E2(I).ELASTIC MODULI OF MATERIAL 1
G12(1),623(1),G13(1)..SHEAR MODULI OF MATERIAL I

Hooovvooonon TOTAL PLATE THICKNESS
MTL(L)...... MATERIAL NUMBER OF LAYER L
NLAY........ NUMBER OF LAYERS IN THE LAMINATE

Q(I,J,L)....STRESS-STRAIN MARTIX OF LAYER L ALIGNED WITH
PRINCIPAL DIRECTIONS
QBAR(I,J,L).TRANSFORMED STRESS-STRAIN MATRIX OF LAYER L

RHO(I)...... DENSITY OF MATERIAL I
RHO1,RHOZ2,RHO3...INERTIAL PARAMETERS OF THE LAMINATE
TH(L)....... THICKNESS OF LAYER L

THETA(L)....FIBER DIRECTION ORIENTATION OF LAYER L
ZBAR(L)..... MID-PLANE POSITION OF LAYER L

.....................................................................

OO OO0 OO0

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION Q(5,5,20),QBAR(5,5,20),E1(20),£E2(20),G12(20),G13(20),
* G23(20),ANU12(20),ANU21(20) ,THETA(20),T(20),
* MTL(20),ZBAR(20),RHO(20),A(5,5),B(3,3),D(3,3)

Shear correction factor 'AK’

OO0

AK=5.0/6.0
H=0.0
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C

ATOL=1.0E-09
PI=3.141592654

C This loop calculates Q' & 'QBAR' matrices and plate thickness 'H'

c

(e NeNel

e NeNel

C
c
¢

00 30 I=1,NLAY
H=H+T(1)
ANU21(MTL(I))=E2(MTL(I))*ANUI2(MTL(I))/ET(MTL(]))
DENOM=1.0-ANU12(MTL(I))}*ANU21(MTL(I))
Q(1,1,1)=E1(MTL(I))/DENOM
Q(2,2,1)=E2(MTL(1))/DENOM
Q€1,2,1)=ANUI2(MTL(1))*E2(MTL(1))/DENOM
Q(3,3,1)=612(MTL(1))
Q(4.4,1)=G23(MTL(I))
Q(5,5,1)=G13(MTL(I))

Change 'THETA' to radians and calculate cos 'AMM' & sin 'ANN'

THETA(I)=THETA(I)*P1/180.0
AMM=COS(THETA(I))
ANN=SIN(THETA(I))

Calculate lamina stiffness matrices 'QBAR' due to orientation 'THETA®

QBAR(1,1,1)=Q(1,1,I)*(AMM**4.0) + 2.0*(Q(1,2,1)+2.0*Q(3,3,1))*
(AMM*AMM)* (ANN*ANN) + Q(2,2,1)*(ANN**4.0)
QBAR(1,2,1)=(Q(1,1,1)+Q(2,2,1)-4.0%(Q(3,3,1)))*(AMM*AMM)*
CANN*ANN)+ Q(1,2,1)*(AMM**4 0+ANN**4.0)
QBAR(1,3,1)=-(Q(2,2,I)*AMM* (ANN**3.0)) + Q(1.1,1)*(AMM**3_ 0)*ANN
- (Q(1,2,1)42.0%Q(3,3, 1) )*AMM*ANN* ( ( AMM*AMM ) - CANN*ANN) )
QBAR(2,1,1)=QBAR(1,2,1)
QBAR(2,2.1)=0(1,1,1)*(ANN**4.0) + 2.0*(Q(1,2,1)+2.0*Q(3,3,1))*
(AMM*AMM) * (CANN*ANN) + Q(2,2,1)*(AMM**4.0)
QBAR(2,3,1)=-(Q(2,2,1)*(AMM**3 0)*ANN) + Q(1,1,1)*AMM*(ANN**3.0)
+ (Q(1,2,1)+2.0*Q(3,3, 1) )*AMM*ANN* ( (AMM*AMM) - CANN*ANN) )
QBAR(3,1,1)=QBAR(1,3,1)
QBAR(3,2,1)=QBAR(2,3,1)
QBAR(3,3,1)=(Q(1,1,1)40(2,2,1)-2.0*Q(1,2,1))*(AMM*AMM)*(ANN*ANN)
+ Q(3,3, 1)*((AMM*AMM) - CANN*ANN) ) **2 .0
QBAR(4,4,1)=Q(4,4,1)*(AMM*AMM) + Q(5,5,1)*(ANN*ANN)
QBAR(4,5,1)=(Q(5,5,1)-Q(4,4,1))*AMM*ANN
QBAR(5,4,1)=0BAR(4,5,1)
QBAR(5,5,1)=Q(5,5,1)*(AMM*AMM) + Q(4,4 1)*(ANN*ANN)

30 CONTINUE

Initialize A,B,.D matrices and inertial terms

D0 40 I=-1,3
DO 40 J-1,3
A(I,J)=0.0
8(1,J)=0.0
D(I,J)=0.0

40 CONTINUE

A(4,4)=0.0
A(4,5)=0.0
A(5,4)=0.0
A(5,5)=0.0
RHO1~0.0
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RHO2=0.0
RH03=0.0

e Nal

Calculate lamina mid-plane position 'ZBAR' from laminate mid-plane (0)

IBAR(1)=-H/2.0+T(1)/2.0
IF(NLAY.GT.1) THEN
D0 50 I=2,NLAY
ZBAR(I)=ZBAR(I-1)+T(1-1)/2.0+T(1)/2.0
50  CONTINUE

END IF
C
C Calculate A,8,0 in-plane matrix terms
C
DO 80 K=1,NLAY
00 60 I=-1.3
00 60 J=1.3

A(1,J)=A(1,J) + QBAR(I,J,K)*T(K)
B(I,J)=B(I,J) + QBAR(I,J,K)*T(K)*ZBAR(K)
D(I1,3)=D(I1,J) + QBAR(I,J,K)*(T(K)*ZBAR(K)**2.0
* + (T(K)**3.0/12.0))
60  CONTINUE

Calculate 'A’ matrix transverse shear terms

OO0

D0 70 1=-4.5
00 70 J=4.5
ACI,J)=A(1,d) + AK*QBAR(I,J,K)*T(K)
70 CONTINUE

Calculate inertial terms for dynamic analysis

aNeN el

RHO1=RHO1 + RHO(MTL(K))*T(K}

RHO2=RHOZ + RHO(MTL(K))*T(K)*ZBAR(K)

RHO3=RHO3 + RHO(MTL(K))*(T(K)*ZBAR(K)**2.0+(T(K)**3.0/12.0))
80 CONTINUE

Set negligibly small laminate property terms to zero

OO0

TOL=A(1,1)*ATOL
00 90 I=1,5
D0 90 J=1,5
IF (ABS(A(1,d)).LT.TOL) A(1,J)=0.0
IF (1.LE.3.AND.J.LE.3) THEN
IF (ABS(B(I,J)).LT.TOL) B(I,J)=0.0
IF (ABS(D(I,J)).LT.TOL) D(I,J)~=0.0
END IF
90 CONTINUE

TOL=RHO1*ATOL
IF (ABS(RHOZ2).LT.TOL) RH02=0.0

RETURN

END
C
CRRRRRRRRARKRRRRRARRRE AR AR IERRARRERERRRRARRRRARRARRRRRRRRRR AR
C

SUBROUTINE STIFF(IEL,NPE,NN,PO, ITEM,NT,NOZERO)
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.....................................................................

. THIS SUBROQUTINE IS WRITTEN FOR COMPOSITE PLATES. THE ELEMENT IS

. BASED ON A SHEAR-DEFORMABLE THEORY. HERE THE FOUR-, EIGHT- OR

. NINE-NODE ISOPARAMETRIC ELEMENT WITH FIVE DEGREES OF FREECOM

. (U,V,W,SX,SY) PER NODE CAN BE USED BY SPECIFYING THE ELEMENT TYPE .

SUBROUTINE VARIABLES

AL D) .. EXTENSIONAL STIFFNESS MATRIX (I,J-1,2.3)
AK,L)...... SHEAR TERMS OF STIFFNESS MATRIX (K,L=4,5)
AQ,A1,A2 A3 A4.. PARAMETERS IN THE TIME-APPROXIMATION SCAEME
B(I,J)...... COUPLING STIFFNESS MATRIX (1,J=1,2,3)

CNST........ INTEGRATION CONSTANT TRANSFORMED TO X,Y COORDINATES
o(1,d)...... BENDING STIFFNESS MATRIX (I.J=1,2,3)

DET......... DETERMINATE OF JACOBIAN TRANSFORMATION MATRIX
ELP(I)...... ELEMENT FORCE VECTOR

ELXY(I,J)...ELEMENT NODE COORDINATES OF ELEMENT NODE I

J=1 FOR X-COORD, J=2 FOR Y-COORD
GAUSS(1,J)..GAUSSIAN POINT COQRDINATES (LOCAL VALUES)
GDSF(J.1)...DERIVATIVE OF SHAPE FUNCTION SF(I)

J=1 WITH RESPECT TO X, J=2 WITH RESPECT TO Y

H(I,J)...... ELEMENT MASS MATRIX

IBDY(D)..... LOCATION AND DIRECTION OF SPECIFIED GLOBAL
DISPLACEMENTS

IBSF(I)..... LOCATION AND DIRECTION OF SPECIFIED NONZERG GLOBAL
FORCES

IEL......... INDICATOR FOR THE ELEMENT TYPE:

IEL=1, 4-NODE ELEMENT
1EL=2, 8- OR 9-NODE ELEMENT

IMESH....... INDICATOR FOR MESH GENERATION

(0-READ IN, 1-SQUARE MESH IS GENERATED)
ITEM........ INDICATOR FOR TRANSIENT ANALYSIS (1-YES, 0-NO) .
LGP......... ORDER OF REDUCED INTEGRATION ON TRANSVERSE SHEAR TERM.
NDF......... NUMBER OF DEGREES OF FREEDOM PER NQDE (U,V #,SX,SY)
NGP......... ORDER OF NORMAL INTEGRATION ON IN-PLANE TERMS
NN.......... NUMBER OF DEGREES OF FREEDOM PER NODE

(NODES PER ELEMENT x NODAL DOF)
NOZERO...... INDICATOR FOR ZERO(NOZERO=0) OR NONZERO(NOZERO=1)

INITIAL CONDITIONS FOR TRANSIENT ANALYSIS

NPE......... NUMBER OF NODES PER ELEMENT (4, 8 OR 9)
NT.......... CURRENT TIME STEP NUMBER IN THE TRANSIENT ANALYSIS
PO.......... INTENSITY OF APPLIED TRANSVERSE UNIFORM PRESSURE
SF(D)....... VALUE OF INTERPOLATION FUNCTION OF NODE 1

STIF(1.J)...ELEMENT STIFFNESS MATRIX

SXX,SXY,SYY, SYX..VALUES OF SHAPE FUNCTION DERIVATIVE INTEGRALS

$X0,SY0,S0X,S0Y..VALUES OF THE PRODUCT OF SHAPE FUNCTION AND

SHAPE FUNCTION DERIVATIVE INTEGRALS

$00......... VALUE OF SHAPE FUNCTION PRODUCT INTEGRALS .
FOR Snm ABOVE X=X DERIVATIVE, Y=Y DERIVATIVE, O=SHAPE FUNCTION .

RHO1,RHOZ ,RHO3. .LAMINATE INERTIAL PROPERTIES

WO,W1,W2....ARRAYS CORRESPONDING TO GFO,GF1,GF2 IN AN ELEMENT

WT(I.d)..... INTEGRATION WEIGHT VALUES

XI,ETA...... LOCAL COORDINATE VALUES OF GAUSS POINTS

....................................................................

IMPLICIT REAL*B(A-H,0-2)
COMMON/STF/ELXY(9,2),STIF(80,80),ELP(80),W0(80;,W1(80),W2(80),




OO e Nl OO0 (e NeNel OO0 (o) o

e NeNel

* A(5,5),8(3,3),0(3,3),A0,A1 A2 A3, A4 RHO1,RHOZ,RHO3
COMMON/SHP/SF(9),GDSF(2,9)
DIMENSION GAUSS(4,4) ,WT(4,4),H(80,80)

Gaussian Point Coordinates

DATA GAUSS/0.0DC. 0.0D0. 0.000, 0.000. -.577350269189626D0,

* .57735026918962600, 0.000, 0.000, -.774596669241483D0, 0.0D0,
* .77459666924148300, 0.000, -.86113631159405300,

* -.339981043568485600, .33998104358485600, .861136311594053D0/

Integration Weight Values

DATA W7/ 2.000, 0.000, 0.00D0, 0.000, 1.000, 1.0D0, 0.0DO, 0.000,
* .555555555555556D0, .B88888888888888900, .555555555555556D0,
* 0.0D0, .347854845137454D0, .65214515486254600,

* .65214515486254600, .347854845137454D0/

Integration order of in-plane terms 'NGP', and
transverse shear terms (reduced-integration) 'LGP’

NGP=IEL+]
LGP=1EL
NOF=NN/NPE

Initialize the element matrices 'STIF'., 'H' and force vector ‘ELP®

DO 10 I=1,NN
ELP(1)=0.0
00 10 J=1.NN
H(I,J)=0.0
STIF(I,J)=0.0
10 CONTINUE

Gauss Quadrature (Full Integration) on in-plane terms begins hare

00 80 NI=1,NGP
DO 80 NJ=1,NGP

Convert to local Gauss point coordinates and evaluate shape function

XI=GAUSS(NI,NGP)
ETA=GAUSS(NJ ,NGP)
CALL SHAPE(NPE,XI,ETA,ELXY,DET)
CNST=DET*WT(NI,NGP)*WT(NJ,NGP)

Distribution of constant pressure to nodal points

DO 30 I=1,NPE
L=(I-1)*NDF+3
ELP(L)=ELP(L)+CNST*SF(I)*P0
30 CONTINUE

Compute Stiffness matrix 'STIF’' and Mass matrix 'H' coefficients
I11=1

D0 70 I=1,NPE
Ji=1
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s XaNel

o NaNel

*

C

D0 60 J=1,NPE

Integrals of the shape functions and derivatives

SXX=GDSF(1,1)*GDSF(1,J)*CNST
SYY=GOSF(2,1)*GOSF(2,J)*CNST
SXY=GDSF(1,1)*GDSF(2,J)}*CNST
SYX=GDSF(2,I)*GDSF(1,J)*CNST
SO0=SF(I)*SF(J)*CNST

Full-Integration on in-plane stiffness terms

STIFCIL,JJ)=STIF(II,J0)+A(L,1)*SXX+A(1,3)*(SXY+SYX)+A(3,3)*SYY

STIFCIT,JJ+1)=STIF(II,JJ+1)+A(1,2)*SXY+A(1,3)*SXX+A(2,3)*SYY
+A(3,3)*SYX
STIF(II+1,30)=STIF(II+1,d0)+A(1,2)*SYX+A(1,3)*SXX+A(2,3)*SYY
+A(3,3)*SXY
STIF(I1,JJ+3)=STIF(II,dd+3)+B(1,1)*SXX+B(1,3)*(SXY+SYX)
+B(3,3)*SYY
STIF(II+3,J0)=STIF(II+3,JJ)+B(1,1)*SXX+B(1,3)*(SYX+SXY)
+8(3,3)*SYY
STIF(II,JJ+4)=STIF(II, JJ+4)+B(1,2)*SXY+B(1,3)*SXX+B(2,3)*SYY
+B(3,3)*SYX
STIF(11+4,J0)=STIF(II+4,0J)+B(1,2)*SYX+B(1,3)*SXX+B(2,3)*SYY
+B(3,3)*SXY
STIF(I1+1,J0+1)=STIF(II+1,JJ+1)+A(2,2)*SYY+A(2,3)*(SXY+SYX)
+A(3,3)*SXX
STIF(I1+1,JJ+3)=STIF(II+1,JJ+3)+B(1,2)*SYX+B(2,3)*SYY
+B(1,3)*SXX+B(3,3)*SXY
STIF(11+3,Jd+1)=STIF(II+3,J0+1)+B(1,2)*SXY+B(2,3)*SYY
+B(1,3)*SXX+B(3,3)*SYX
STIF(II+1,JJ+4)=STIF(II+1,JJ+4)+8(2,2)*SYY+B(2,3)*(SXY+SYX)
+B(3,3)*SXX
STIF(11+4,J0+1)=STIF(I1+4,3d+1)+B(2,2)*SYY+B(2,3)*(SYX+SXY)
+8(3,3)*SXX
STIF(11+3,JJ+3)=STIF(11+3,JJ+3)+D(1,1)*SXX+D(1,3)*(SXY+SYX)
+D(3,3)*SYY
STIF(1143,0044)=STIF(I1+43,JJ+4)+D(1,2)*SXY+D(1,3)*SXX
+D(2,3)*SYY+D(3,3)*SYX
STIF(1144,30+3)=STIF(11+4,J0+3)+0(1,2)*SYX+D(1,3)*SXX
+D(2,3)*SYY+D(3,3)*SXY
STIF(11+4,J0+4)=STIF(I11+4 ,J0+4)+D(2,3)*(SXY+SYX)+D(3,3)*SXX
+0(2,2)*SYY

C Mass matrix terms 'H' for transient analysis

¢

IF (ITEM.EQ.1) THEN
H(I1,Jd)=H(II,JJ)+RHO1*S00
H(IT,J30+3)=H(I1,JJ+3)+RH02*S00
H(II+3,J0)=H(I1+43,J4)+RH02*S00
H(II41,dJ+1)=H(1I+1,JJ+1)+RHO1*S500
HOII+1,0044)=H(11+1,.J0+4)+RH02*S00
H(I1+4 ,3J+1)=H(11+4,JJ+1)+RH02*S00
H(I1+2,dJ+2)=H(11+2,JJ+2)+RH01*S00
H(11+3,Jd+3)=H(11+3,JJ+3)+RH03*S00
H(I11+4,3J+4)=H(11+4 ,JJ+4)+RH03*S00

END IF
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114
JJ=NDF*J+1
60 CONTINUE
II=NDF*]+1
70 CONTINUE
80 CONTINUE

Gauss Quadrature (Reduced Integration) on transverse shear terms

OO

D0 110 NI=1,LGP
DO 110 NJ=1,LGP
X1=GAUSS(NI,LGP)
ETA=GAUSS(NJ, LGP)
CALL SHAPE(NPE,XI,ETA,ELXY,DET)
CNST=DET*WT(NI,LGP)*WT(NJ,LGP)
1I=1
D0 100 I=1,NPE
JJ=1
DO 90 J=1,NPE

Integrals of the shape functions and derivatives

OO0

SXX=GDSF(1,I)*GDSF(1,J)*CNST
SYY=GDSF(2,1)*GDSF(2,J)*CNST
SXY=GDSF(1,I)*GDSF(2,J)*CNST
SYX=GDSF(2,1)*GDSF(1,J)*CNST
SX0=GDSF(1,I)*SF(J)*CNST
SOX=SF(I)*GDSF(1,J)*CNST
SYO=GDSF(2,1)*SF(J)*CNST
SOY=SF(I)*GDSF(2,J)*CNST
S00=SF(I)*SF(J)*CNST
C
C Reduced-Integration on in-plane stiffness terms
C
STIF(I1142,3342)=STIF(1142,JJ+2)+A(5,5)*SXX+A(4,5)*(SXY+SYX)
* +A(4,4)*SYY
STIF(1142,J043)=STIF(11+2,JJ+3)+A(5,5)*SX0+A(4,5)*SY0
STIF(II+3,33+2)=STIF(I11+3,dJ+2)+A(5,5)*SOX+A(4,5)*S0Y
STIF(II42,J0+4)=STIF(11+2,JJ0+4)+A(4,5)*SX0+A(4,4)*SYD
STIF(I1I+4,3J0+2)=STIF(11+4,J0+2)+A(4,5)*S0X+A(4,4)*S0Y
STIF(1I+43,30+3)=STIF(II+3,JJ+3)+A(5,5)*S00
STIF(II1+43,3J+4)=STIF(11+3,J0+4)+A(4,5)*S00
STIF(II+4,J0+3)=STIF(I1+4,3J+3)+A(4,5)*S00
STIF(11+44,J0+4)=STIF(I1+4,JJ+4)+A(4,4)*S00

JJ=NDF*J+1
90 CONTINUE
I11=NDF*I+1
100 CONTINUE
110 CONTINUE
C
C Element calculations for transient analysis brgin here
C
IF (ITEM.EQ.0) RETURN
IF (NOZERO.EQ.1.AND.NT.EQ.1) THEN
DO 120 I=1,NN
ELP(1)=0.0
DO 120 J=1.NN




ELP(I)=ELP(I)-STIF(1,J)*W0(J)
STIF(I,J)=H(I,J)
120 CONTINUE
RETURN
END IF

130 DO 140 I=1.NN
DO 140 J=1,NN
ELP(I)=ELP(I)+H(]I,J)*(AO*WO(J)+A2*W1(J)+A3*W2(J))
STIF(I.,J)=STIF(I,J)+A0*H(1,J)
140 CONTINUE
RETURN
END
C
CRRRERRRARRRR AR AANRNARRRRRRARRRNRR AR AR AR RARARRRRRRRRRAARRARRRRANRR R AR
C
SUBROUTINE STRESS (NPE,NDF,IEL,ELXY,W,QBAR,NLAY, TH H)

.....................................................................

. THIS ROUTINE EVALUATES THE STRESSES AND STRAINS AT THE GAUSS
. POINTS USING THE REDUCED INTEGRATION.

AKAPX ,AKAPY ,AKAPXY ., .CURVATURES AT CURRENT GAUSS PQINT
ELXY(1,J)...ELEMENT NODE COORDINATES OF ELEMENT NODE 1

J=1 FOR X-COORD, J=2 FOR Y-COORD
EPNCD)...... VECTOR OF CURRENT Z-POSITION STRAINS

1-EPNxx,2-EPNyy,3-GAMxy ,4-GAMyz,5-GAMxz
EPNXO,EPNYO,GAMXYO. .MID-PLANE STRAINS AT CURRENT GAUSS POINT
EPNX1,EPNY1,GAMXY1. .LAMINATE BOTTOM STAINS AT CURRENT GAUSS POINT.
EPNX2,EPNY2,GAMYY2. . LAMINATE TOP STAINS AT CURRENT GAUSS POINT
GAMYZ ,GAMXZ. .TRANSVERSE SHEAR STRAINS AT CURRENT GAUSS POINT
GAUSS(I,J)..GAUSSIAN POINT COORDINATES (LOCAL VALUES)
GDSF(J,1)...DERIVATIVE OF SHAPE FUNCTION SF(I)

J=1 WITH RESPECT TO X, J=2 WITH RESPECT TO Y

3 TOTAL PLATE THICKNESS
IEL......... INDICATOR FOR THE ELEMENT TYPE:

TEL=1, 4-NODE ELEMENT

TIEL=2, 8- OR 9-NODE ELEMENT .
Lovevnvnnne POINTER TO FIRST DCF OF NODE WITH 'NDF' DOF PER NODE .
NDF......... NUMBER OF DEGREES OF FREEDOM PER NODE (U,V,W,SX,SY)
NGP......... ORDER OF REDUCED INTEGRATION FOR STRAINS
NLAY........ NUMBER OF PLATE LAYERS
NPE......... NUMBER OF NODES PER ELEMENT (4, 8 OR 9)

QBAR(I,J,L).TRANSFORMED STRESS-STRAIN MATRIX OF LAYER L
SIGMA(I)....VECTOR OF CURRENT Z-POSITION STRESSES
1-Sxx,2-Syy.3-Txy,.4-Tyz.5-Txz

SF(D)....... VALUE OF INTERPOLATION FUNCTION OF NODE I
TH(L)....... THICKNESS OF LAYER L

WD........ VALUES OF ELEMENT GENERALIZED DISPLACEMENTS
XI.ETA...... LOCAL COORDINATE VALUES OF GAUSS POINTS
XYoooooiaa, GLOBAL COORDINATES OF CURRENT GAUSS POINT
(L)........ Z-COORDINATE OF LAYER INTERFACES (LAYER L/2)

L=0DD-BOTTOM OF LAYER, L=EVEN-TOP OF LAYER

.....................................................................

s e EeEsNeNsNeNeoNsNaeNoNeoNeNeRaNeNelsNasNelaeNeoNelsNalas e NeNasNae N NaoNaNeoNe Ne e Nel

IMPLICIT REAL*8 (A-H,0-2)
COMMON/SHP/SF(9) ,GDSF(2,9)
DIMENSION GAUSS(4,4),ELXY(9,2),W(80),QBAR(5,5,20),TH(20),2(40),
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c

OO0

s NeNel

OO0

w

EPN(S), SIGMA(S)

Gaussian point coordinates

DATA GAUSS/0.000, 0.000, 0.0D0, 0.0D0, -.57735026918962600,

* .57735026918962600. 0.000, 0.000, -.77459666924148300, 0.000,
* .77459666924148300. 0.0D0, -.86113631159405300,
* -.339981043584856D0, .339981043584856D0, .861136311594053D0/

Order of integration (reduced) 'NGP'

NGP=IEL
D0 60 NI=1,NGP
DO 60 NJ=1,NGP

XI=GAUSS(NI,NGP)

ETA=GAUSS(NJ,NGP)

CALL SHAPE (NPE,XI,ETA,cLXY,DET)

EPNX0=0.0

EPNY0=0.0

GAMXY0=0.0

GAMYZ2=0.0

GAMXZ=0.0

AKAPX=0.0

AKAPY=0.0

AKAPXY=(0.0

X=0.0

¥Y=0.0

D0 20 I=1,NPE
L=(1-1)*NDF+1
X=X+SF(I)*ELXY(I,1)
Y=Y+SF(I)*ELXY(I,2)

Compute the midplane strains and curvatures and average

10

20

tranverse shear strain

EPNXO=EPNXO+GDSF(1,1)*W(L)
EPNYO=EPNYO+GDSF(2,1)*W(L+1)
GAMXYO0=GAMXYO0+GDSF(2,I)*W(L)+GDSF(1,I1)*W(L+1)
GAMY Z=GAMY Z+SF (I )*W(L+4 )+GDSF(2,1)*N(L+2)
GAMXZ=GAMXZ+SF { I)*W(L+3)+GDSF(1,1)*W(L+2)
AKAPX=AKAPX+GDSF(1, I)*W(L+3)
AKAPY=AKAPY+GDSF(2,1)*W(L+4)
AKAPXY=AKAPXY+GDSF(2,1)*W(L+3)+GDSF(1,1)*W(L+4)
CONTINUE

Compute strains at the bottom (1) and top (2) of the laminate

EPNX1=EPNXO-(H/2.0)*AKAPX
EPNYI=EPNY(Q-(H/2.0)*AKAPY
GAMXY1=GAMXYO- (H/2.0)*AKAPXY
EPNX2=EPNXO+(H/2.0)*AKAPX
EPNY2=EPNYO+(H/2.0)*AKAPY
GAMXY 2=GAMXY0+(H/2.0)*AKAPXY

Print midplane strains and curvatures, and surface strains

WRITE(2,100) X,Y
WRITE(2,110) EPNXO,EPNYO,GAMXYO,AKAPX,AKAPY , AKAPXY
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WRITE(2,120) EPNXI,EPNY1, GAMXY1
WRITE(2,130) EPNX2,EPNY2,GAMXY2

¢
C Compute z-coordinate at the lamina interfaces
C
2(0)=-H/2.0
DO 50 LL=1,NLAY
2(2*LL-1)=2(2*LL-2)
Z(2*LL)=Z(2*LL-1)+TH(LL)
C
C Compute layer strains at layer interfaces
C
DO 40 KK=1,2
EPN(1)=EPNXO+Z(2*(LL-1)+KK)*AKAPX
EPN(2)=EPNYQ+Z(2*(LL-1)+KK)*AKAPY
EPN(3)=GAMXYQ+Z(2*(LL-1)+KK)*AKAPXY
EPN(4)=GAMYZ
EPN(5)=GAMXZ
C
C This loop computes the layer stresses at layer interfaces
C
00 30 II=1,5
SIGMA(11)=0.0
DO 30 JJ=1,5
SIGMA(II)=SIGMA(II)+QBAR(II ,JJ,LL)*EPN(JJ)
30 CONTINUE
C
C Print the stresses at the lamina interfaces
C
WRITE(2,140) LL,Z(2*(LL-1)+KK), (SIGMA(MM) MM=1,5)
40 CONTINUE
50 CONTINUE
60 CONTINUE
RETURN
C
C

100 FORMAT(/,1X,'(',E12.4.",' E12.4,")")
110 FORMAT(2X,'MID’,1X,(1X,AF12.4))
120 FORMAT(2X,'BOT',1X,(1x,3E12.4))
130 FORMAT(2X,'TOP',1X,(1X,3E12.4))
140 FORMAT(2X,12,1X,E12.4,1X,5€E12.4)

END
c*tttii**t*************************'t*******i************t******t*********

SUBROUTINE BNDY(NRMAX,NCMAX, NEQ,NHBW,S,SL,NBDY,IBDY,VBDY)

.....................................................................

. SUBROUTINE USED TO IMPOSE BOUNDARY CONDITIONS ON BANDED EQUATIONS .

IBDY(I)..... LOCATION AND DIRECTION OF SPECIFIED GLOBAL

DISPLACEMENTS
........ TOTAL NUMBER OF SPECIFIED GLOBAL DISPLACEMENTS
NCMAX....... VALUE OF THE COLUMN-DIMENSION OF S .
NEQ......... TOTAL NUMBER OF DEGREES OF FREEDOM (NODESxNODAL DOF) .
NHBW........ HALF-BAND WIDTH OF GLOBAL STIFFNESS MATRIX
NRMAX. ...... VALUE OF THE ROW-DIMENSION OF S

OO0
=
(-3
jw }
=<

S(M,N)...... GLOBAL STIFFNESS MATRIX (IN BANDED FORM)




c SL(M)....... GLOBAL FORCE VECTOR

C . SVAL........ VALUE OF CURRENT SPECIFIED DISPLACEMENT .
C . VBDY(D..... VALUES OF THE DISPLACEMENTS CORRESPONDING TO IBOY(I) .
c

¢

.....................................................................

IMPLICIT REAL*8(A-H,0-2)
DIMENSION S{NRMAX,NCMAX),SL(NRMAX),IBDY(NBODY),VBDY(NBDY)

DO 300 NB8=1,NBDY
1E=IBDY(NB)
SVAL=VBDY(NB)
I T=NHBN-1
I=1E-NHBW
DO 100 II=1,IT7
I=]+1
IF (1.GE.1) THEN
J=1E-1+1
SLCI)=SL(I)-S(I,J)*SVAL
$(1,J)=0.0
END IF
100  CONTINUE
S(IE,1)=1.0
SL(TE)=SVAL
I=-1E
DO 200 II=2,NHBW
I=1+1
IF (1.LE.NEQ) THEN
SL(I)=SL(I)-SCIE,I1)*SVAL
S(IE,11)=0.0
END IF
200 CONTINUE
300 CONTINUE
RETURN
END
C
C**t******t****ti*********t***ttt***t***********i**************tiﬁ***t***
C
SUBROUTINE SOLVE(NRM,NCM,NEQNS,NBW,BAND,RHS, IRES)

¢

G ittt itaieetraneeteantssscensotasiinesatarranotscasaranaaceresarns
C . SOLVING A BANDED SYMMETRIC SYSTEM OF EQUATIONS

C . IN RESOLVING, IRES .GT. 0, LHS ELIMINATION IS SKIPPED

¢

¢ BAND(M,N)...GLOBAL STIFFNESS MATRIX (IN BANDED FORM)

c IRES........ IF IRES .GT. 0 THEN FORWARD ELIMINATION IS SKIPPED

c NBW......... HALF-BAND WIDTH OF GLOBAL STIFFNESS MATRIX

c NCM......... VALUE OF THE COLUMN-DIMENSION OF S

c NEONS....... NUMBER OF EQUATIONS (TOTAL DEGREES OF FREEDOM)

c NRM......... VALUE OF THE ROW-DIMENSION OF S

C RHS(M)...... GLOBAL FORCE VECTOR

C SVAL........ VALUE OF CURRENT SPECIFIED DISPLACEMENT .
c veDY(I)..... VALUES OF THE DISPLACEMENTS CORRESPONDING TO IBDY(I) .
B ittt ittt ietieeteae et rrnstessenesasetrrartttsaastsstecnasrtens
C

IMPLICIT REAL*B(A-H,0-2)
DIMENSION BAND(NRM,NCM),RHS(NRM)

MEQNS=NEQNS-1
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Forward Elimination

[aN e Rl

IF (IRES.EQ.0) THEN
00 500 NPIVe~1 MEQGNS
NPIVOT=NPIV+]
LSTSUB=NPIV+NBNW-1
IF (LSTSUB.GT.NEQNS) LSTSUB=NEQNS
DO 400 NROW=NPIVOT,LSTSUB

Invert rows and columns for row factor

(e N e Ne]

NCOL=NROW-NPIV+1
FACTOR=BAND(NPIV ,NCOL)/BAND(NPIV,1)
DO 200 NCOL=NROW,LSTSUB
ICOL=NCOL-NROW+1
JCOL=NCOL-NPIV+1
BAND(NROW, I1COL)=BAND(NROW, ICOL) - FACTOR*BAND(NPIV,JCOL)
200 CONTINUE
RHS (NROW )=RHS (NROW ) - FACTOR*RHS(NPIV)
400 CONTINUE
500 CONTINUE

END IF
C
C Skip forward elimination of matrix for IRES .GT. O
¢

IF (IRES.GT.0) THEN
90 DO 100 NPIV=1,MEQNS
NPIVOT=NPIV+1
LSTSUB=NPIV+NBW-1
IF(LSTSUB.GT .NEQONS) LSTSUB=NEQNS
00 110 NROW=NPIVOT,LSTSUB
NCOL=NROW-NPIV+1
FACTOR=BAND(NPIV,NCOL)/BAND(NPIV,1)
RHS (NROW)=RHS (NROW) - FACTOR*RHS(NPIV)
110 CONTINUE
100 CONTINUE

END IF
C
C Back Substitution
C

DO 800 IJK=2,NEQNS
NPIV=NEQNS-1JK+2
RHS(NPIV)=RHS(NPIV)/BAND(NPIV,1)
LSTSUB=NPIV-NBW+1
IF (LSTSUB.LT.1) LSTSUB=1
NPIVOT=NPIV-1
D0 700 JKI=LSTSUB,NPIVOT

NROW=NPIVOT-JKI+LSTSUB
NCOL=NPIV-NROW+1
FACTOR=BAND(NROW,NCOL)
RHS(NRQOW)=RHS (NROW) - FACTOR*RHS(NPIV)
700  CONTINUE
800 CONTINUE

RHS(1)=RHS(1)/BAND(1,1)

RETURN

END




cﬁiﬁﬁﬁ*ttti**ttittﬁtﬁ""hﬁ.tﬁttﬁti.t*ttﬁtiiiﬁii*tiﬁtt'tt.ttitﬁttittiﬁtt*i

c
SUBROUTINE SHAPE(NPE, X1 ,ETA,ELXY,DET)

.....................................................................

. THIS SUBROUTINE EVALUATES THE INTERPOLATION FUNCTIONS (SF(I)) AND .
. ITS DERIVATIVES WITH RESPECT TO NATURAL COORDINATES (DSF(I.J)),

. AND THE DERIVATIVES OF SF(I) WITH RESPECT TO GLOBAL COORDINATES

. FOR 4, 8, AND 9-NODED RECTANGULAR ISOPARAMETIRC ELEMENTS

OET......... DETERMINATE OF JACOBIAN TRANSFORMATION MATRIX
DSF(I1.J)....LOCAL DERIVATIVE OF SF(J) WITH RESPECT TO XI IF I=l
AND WITH RESPECT TQ ETA IF [=2,
ELXY(I,J)...ELEMENT NODE COORDINATES OF ELEMENT NODE I
Jd=1 FOR X-COORD, J=2 FOR Y-COORD
GOSF(I,J)...GLOBAL DERIVATIVE OF SF(J) WITH RESPECT TO X IF I=1
AND WITH RESPECT TO Y IF I=2.
GJ(I.J)..... JACOBIAN MATRIX
GIINV(I,J). . INVERSE OF THE JACOBIAN MATRIX

NP(D)....... ARRAY OF ELEMENT NODES (USED FOR DEFINING SF AND DSF).
NPE......... NUMBER OF NODES PER ELEMENT (4, 8 OR 9)

SF(I)....... INTERPOLATION FUNCTION FOR NODE 1 OF THE ELEMENT
XI,ETA...... LOCAL COORDINATE VALUES OF GAUSS POINTS

XNODE(I,J)..LOCAL COORDINATES OF NODE I OF THE ELEMENT
J=1 FOR XI-COORD, J=2 FOR ETA-COORD

.....................................................................

[sNsNeNeNeReNesNsEsRsNasNoNeoNaeNeReNaNasNaeNeoNeNaeNeN e

IMPLICIT REAL*8 (A-H,0-2)
COMMON/SHP/SF(9),GDSF(2,9)
DIMENSION ELXY(9,2),XNODE(9,2),NP(9),D5F(2,9),6J(2,2),GJINV(2,2)

Local nodal point coordinates 'XNODE' and node numbers 'NP'

e Ne]

DATA XNODE/-1.0D0,2*1.0D00,-1.000,0.000,1.000,0.000,-1.000,0.0D0,
* 2*-1.000,2*1.000,-1.000,0.000,1.000,2*0.000/
DATA NP/1,2,3.4,5,7.6,8,9/

Multiplication function for real variables

OO0

FNC(A,B)=A*B
IF (NPE-8) 60,10,80

Quadratic interpolation functions (for the EIGHT-NODE element)

OO0

10 DO 40 I-=1,NPE
NI=NP(I)
XP=XNODE(NI, 1)
YP=XNODE(NI,2)
XI10=1.0+XI*XP
ETAO=1.0+ETA*YP
XI11=1.0-XI*XI
ETA1=1.0-ETA*ETA

IF (1.67.4) GOTO 20
SF(NI)=0.25*FNC(XI0,ETAQ)*(XI*XP+ETA*YP-1.0)
DSF(1,NI)=0.25*FNC(ETAO,XP)*(2.0*XI*XP+ETA*YP)
DSF(2,NI)=0.25*FNC(XIO0,YP)*(2.0*ETA*YP+XI*XP)
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GOTO 40

20 IF (1.GT7.6) GOTO 30
SF(NI)=0.5*FNC(XI1,ETAD)
DSF(1 . NI)=-FNC(XI,ETAO)
DSF(2,NI)=0.5*FNC(YP, XI1)
GOTO 40

30 SF(NI)=0.5*FNC(ETA1,XI0)
DSF(1,NI)=0.5*FNC(XP,ETAL)
DSF(2,NI)=-FNC(ETA,XIO)

40 CONTINUE

GOTO 130

Linear interpolation functions (for the FOUR-NQODE element)

60 DO 70 I=1,NPE
XP=XNODE(I,1)
YP=XNODE(1,2)
X10=1.0+XI*XP
ETAO=1.0+ETA*YP
SF(1)=0.25*FNC(XI10,ETAQ)
DSF(1,1)=0.25*FNC(XP,ETAQ)
0SF(2,1)=0.25*FNC(YP,XIO0)
70 CONTINUE
GOT0 130

Quadratic interpolation functions (for the NINE-NODE element)

80 DO 120 I-1,NPE
NI=NP(I)
XP=XNODE(NI,1)
YP=XNODE(NI,2)
X10=1.0+XI*XP
ETAO=1.0+ETA*YP
XI1=1.0-XI*XI
ETAl=1.0-ETA*ETA
XI12=XP*X1
ETA2=YP*ETA
IF (1.67.4) GOTO 90
SF(NI)=0.25*FNC(XIO0,ETAQ)*XI2*ETAZ
OSF(1,NI)=0.25*XP*FNC(ETA2,ETA0)*(1.0+2.0*X12)
DSF(2,N1)=0.25*YP*FNC(XI2,XI0)*(1.0+2.0*ETA2)
GOTO 120
90 IF (I.GT.6) GOTO 100
SF(NI)=0.5*FNC(XI1,ETAQ)*ETA2
DSF(1,NI)=-XI*FNC(ETA2,ETAO)
DSF(2,NI)=0.5*FNC(XI1,YP)*(1.0+2.0*%ETA2)
GOTO 120
100 IF (1.GT7.8) GOTO 110
SF(NI)=0.5*FNC(ETAL,XI0)*X12
OSF(2,NI)=-ETA*FNC(XI2,X10)
OSF(1,NI)=0.5*FNC(ETAL,XP)*(1.0+2.0*XI2)
GOTO 120
110 SF(NI)=FNC(XI1,ETA1)
DSF(1,NI)=-2.0*XI*ETAl
DSF(2,NI)=-2.0*ETA*XI1
120 CONTINUE
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C
C Transform derivatives from local (XI,ETA) to global (X,Y) derivatives
C
130 DO 140 I-1,2
00 14Q J=1,2
GJ(I,J)=0.0
DO 140 K=1,NPE
GJ(I,J)=GJ(1,d)+DSF(I, KI*ELXY(K,J)
140 CONTINUE
DET=GJ(1,1)*GJ(2,2)-GJd(1,2)*GJ(2,1)
GJINV(1,1)=GJ(2,2)/DET
GJINV(2,2)=GJ(1,1)/DET
GJINV(1,2)=-GJ(1,2)/DET
GJINV(2,1)=-GJ(2,1)/DET
DO 150 I=1,2
DO 150 J=1,NPE
GDSF(1,J)=0.0
DO 150 K=1,2
GDSF(1,J)=GDSF(1,J)+GJINV(I,K)*DSF(K,J)
150 CONTINUE

RETURN

END
C
CRRAARN AR RN R I RIRRAARRRRARRRRARN AR RRRRRIRIIRIAARANARRRRA RN RRARARRAN NN
c

SUBROUTINE MESH(IEL,NX, NY NPE NNM, NEM)

.....................................................................

. THIS SUBROUTINE GENERATES ARRAY NOD(1,J) COORDINATES X(I),Y(I)

. AND MESH INFORMATION (NNM,NEM,NPE) FOR RECTANGULAR DOMAINS. THE

. DOMAIN IS DIVIDED INTO LINEAR OR QUADRATIC QUADRILATERAL ELEMENTS .
. {NX BY NY NONUNIFORM MESH IN GENERAL).

DX(I),DY(I).DISTANCE BETWEEN NODES IN X,Y DIRECTIONS FOR MESH

GENERATION
IEL........ ELEMENT TYPE (IEL=1: 4 NODES, IEL=2: 8 OR 9 NODES)
........ TOTAL NUMBER OF ELEMENTS
NNM........ TOTAL NUMBER OF NODES
NOD(I,J)...CONNECTIVITY MATRIX
NPE........ NUMBER OF NODES PER ELEMENT
NXONY...... NUMBER OF ELEMENTS ALONG X,Y-DIRECTIONS

NXX.NYY....NUMBER OF SUBDIVISIONS BETWEEN NODES IN X,Y-DIRECTIONS.
NXX1,NYY1..NUMBER OF NODES ALONG X,Y-DIRECTIONS .
NYY........ NUMBER OF DIVISIONS BETWEEN NODES IN Y-DIRECTION
X{(I),Y(I)..COORDINATES OF THE ITH NODE

---------------------------------------------------------------------

OO0
- 4
m
x

IMPLICIT REAL*8 (A-H,0-7)
COMMON/MSH/NOD(200,9),X(225),Y(225),DX(15),DY(15)

Mesh of Quadrilateral Elements with Four, Eight, or Nine nodes

OO0

100 NEX1=NX+1
NEY1=NY+1
NXX=IEL*NX
NYY=IEL*NY
NXX1=NXX+1

122




NYY1=NYY+]
NEM=NX*NY
NNM=NXXT1*NYY1-(IEL-1)*NX*RY
K0=0
IF (NPE.EQ.9) THEN
NNM=NXX1*NYY1
KQ=1
END IF
C
C Generate element connectivity array 'NOD(I,J)' of first element
C
NOD(1,1)=1
NOD(1,2)=1EL+]
NOD(1,3)=NXX1+(IEL-1)*NEX1+IEL+]
1F (NPE.EQ.9) NOD(1,3)=4*NX+5
NOD(1,4)=NOD(1,3)-1EL
IF (NPE.GT.4) THEN
NOD(1,5)=2
NOD(1,6)=NXX1+(NPE-6)
NOD{1,7)=NOD(1,3)-1
NOD(1,8)=NXX1+1
IF (NPE.EQ.9) NOD(1,9)=NXX1+2
END IF
C
C For more than 1 element in the y-direction
C
200 IF (NY.GT.1) THEN
M=1
DO 220 N=2,NY
L=(N-1)*NX+1
DO 210 I=1,NPE
210 NOD(L, I)=NOD(M, I)+NXX1+(IEL-1)*NEXI+KO*NX
M=L
220 CONTINUE
END IF
c
C For more than 1 element in the x-direction
C
230 IF (NX.GT.1) THEN
DO 260 NI=2,NX
00 240 I=1,NPE
Ki=IEL
IF(1.€Q0.6.0R.1.EQ.8)K1=1+K0
240 NOD(NI,I)=NOD(NI-1,1)+Kl
M=N1
DO 260 NJ=2,NY
L=(NJ-1)*NX+NI
DO 250 J=1,NPE

250 NOD(L,J)=NOD(M, J)+NXX1+(IEL-1)*NEXI+KO*NX
M=L
260  CONTINUE
END IF
¢

C Generate the nodal coorinates arrays 'X(I)' and 'Y(I)'
C
270 YC=0.0
C
C For 4 or 8-noded elements
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IF (NPE.EQ.S) GOTO 310
00 300 NI=1,NEY!
I=(NXX1+(TEL-1)*NEX1)*(NI-1)+1
J=(NI-1)~“IEL+1
X(1)=0.0
Y(1)=¥(
DO 280 NJ=1,NXX
I=1+1
X(1)=X(I-1)+DX(NJ)
Y(1)=YC
280 CONTINUE
C
C For 8-noded elements
C
IF (NI.GT.NY.OR.IEL.EQ.1) GOTO 300
J=J+1
YC=YC+DY(J-1)
I=I+1
X(1)=0.0
Y(1)=YC
DO 290 Il=1,NX
K=2*11-1
I=1+1
X(I)=X(I-1)+DX(K)+DX(K+1)
Y(I)=YC
290 CONTINUE
300 YC=YC+DY(J)
RETURN
C
C For 9-noded elements
C
310 DO 330 NI=1,NYY1
T=NXXI*(NI-1)
XC=0.0
D0 320 NJ=-1,NXX1
=i+l
X(I1)=XC
Y\ I )-YC
XC=XC+DX(NJ)
320 CONTINUE
YC=YC+DY(NI)
330 CONTINUE
(
RETURN
END
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